Skip to main content

Hardy Inequality for Antisymmetric Functions


We consider Hardy inequalities on antisymmetric functions. Such inequalities have substantially better constants. We show that they depend on the lowest degree of an antisymmetric harmonic polynomial. This allows us to obtain some Caffarelli–Kohn–Nirenberg-type inequalities that are useful for studying spectral properties of Schrödinger operators.

This is a preview of subscription content, access via your institution.


  1. A. A. Balinsky, W. D. Evans, and R. T. Lewis, The Analysis and Geometry of Hardy’s Inequality, Universitext, Springer, Cham, 2015.

    Book  Google Scholar 

  2. A. A. Balinsky, W. D. Evans, and R. T. Lewis, “On the number of negative eigenvalues of Schrödinger operators with an Aharonov–Bohm magnetic field”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 457:2014 (2001), 2481–2489.

    MathSciNet  Article  Google Scholar 

  3. M. Sh. Birman, “On the spectrum of singular boundary-value problems”, Mat. Sb., 55(97):2 (1961), 125–174; English transl.:, Amer. Math. Soc. Trans., 53 (1966), 23–80.

    MathSciNet  Google Scholar 

  4. L. Caffarelli, R. Kohn, and L. Nirenberg, “First order interpolation inequalities with weights”, Compositio Math., 53:3 (1984), 259–275.

    MathSciNet  MATH  Google Scholar 

  5. E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.

    Book  Google Scholar 

  6. E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, Cambridge, 1995.

    Book  Google Scholar 

  7. T. Ekholm and R. Frank, “On Lieb–Thirring inequalities for Schrödinger operators with virtual level”, Comm. Math. Phys., 264:3 (2006), 725–740.

    MathSciNet  Article  Google Scholar 

  8. E. Gagliardo, “Ulteriori proprietà di alcune classi di funzioni in pi\‘u variabili”, Ricerche Mat., 8 (1959), 24–51.

    MathSciNet  MATH  Google Scholar 

  9. Yu. V. Egorov and V. A. Kondrat’ev, On Spectral Theory of Elliptic Operators, Operator Theory: Advances and Applications, 89 Birkhäuser, Basel, 1996.

    Book  Google Scholar 

  10. M. Hoffmann-Ostenhof and Th. Hoffmann-Ostenhof, “Absence of an \(L^2\)-eigenfunction at the bottom of the spectrum of the Hamiltonian of the hydrogen negative ion in the triplet S-sector”, J. Phys. A, 17 (1984), 3321–3325.

    MathSciNet  Article  Google Scholar 

  11. M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, A. Laptev, and J. Tidblom, “Many-particle Hardy inequalities”, J. Lond. Math. Soc. (2), 77:1 (2008), 99–114.

    MathSciNet  Article  Google Scholar 

  12. M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, and H. Stremnitzer, “Local properties of Coulombic wave functions”, Comm. Math. Phys., 163:1 (1994), 185–213.

    MathSciNet  Article  Google Scholar 

  13. M. Hutter, On Representing (Anti)symmetric Functions, arXiv: 2007.15298.

  14. E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14 Amer. Math. Soc., Providence, RI, 2001.

    MATH  Google Scholar 

  15. G. Lioni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, 181 Amer. Math. Soc., Providence, RI, 2017.

    Book  Google Scholar 

  16. A. Laptev and Yu. Netrusov, “On the negative eigenvalues of a class of Schrödinger operators”, Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 189 Amer. Math. Soc., Providence, RI, 1999, 173–186.

    MATH  Google Scholar 

  17. A. Laptev and T. Weidl, “Hardy Inequalities for Magnetic Dirichlet Forms”, Operator Theory: Advances and Applications, 108 Birkhäuser, Basel, 1999, 299–305.

    MathSciNet  MATH  Google Scholar 

  18. D. Lundholm, “Geometric extensions of many-particle Hardy inequalities”, J. Phys. A: Math. Theor., 48:17 (2015).

    MathSciNet  Article  Google Scholar 

  19. V. Maz’ya, Sobolev Spaces, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985.

    Book  Google Scholar 

  20. A. I. Nazarov, “Hardy–Sobolev inequalities in a cone”, J. Math. Sci., 132:4 (2006), 419–427.

    MathSciNet  Article  Google Scholar 

  21. L. Nirenberg, “On elliptic partial differential equations”, Ann. Squola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115–162.

    MathSciNet  MATH  Google Scholar 

  22. M. Z. Solomyak, “A remark on the Hardy inequalities”, Integral Equations Operator Theory, 19:1 (1994), 120–124.

    MathSciNet  Article  Google Scholar 

  23. M. Z. Solomyak, “Piecewise-polynomial approximation of functions from \(H^l((0,1)^d)\), \(2l=d\), and applications to the spectral theory of the Schrödinger operator”, Israel J. Math., 86:1–3 (1994), 253–275.

    MathSciNet  Article  Google Scholar 

  24. G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura ed Appl., 110 (1976), 353–372.

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to express their gratitude to J. Dolbeault, M. J. Esteban, R. Frank, and A. Ilyin for useful discussions.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to T. Hoffmann-Ostenhof or A. Laptev.

Additional information

To Mikhail Zakharovich Solomyak, a colleague and the teacher, with respect and admiration

Translated by A. Laptev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoffmann-Ostenhof, T., Laptev, A. Hardy Inequality for Antisymmetric Functions. Funct Anal Its Appl 55, 122–129 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Hardy inequalities
  • antisymmetric functions
  • Caffarelli–Kohn–Nirenberg inequality