A. A. Balinsky, W. D. Evans, and R. T. Lewis, The Analysis and Geometry of Hardy’s Inequality, Universitext, Springer, Cham, 2015.
Book
Google Scholar
A. A. Balinsky, W. D. Evans, and R. T. Lewis, “On the number of negative eigenvalues of Schrödinger operators with an Aharonov–Bohm magnetic field”, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 457:2014 (2001), 2481–2489.
MathSciNet
Article
Google Scholar
M. Sh. Birman, “On the spectrum of singular boundary-value problems”, Mat. Sb., 55(97):2 (1961), 125–174; English transl.:, Amer. Math. Soc. Trans., 53 (1966), 23–80.
MathSciNet
Google Scholar
L. Caffarelli, R. Kohn, and L. Nirenberg, “First order interpolation inequalities with weights”, Compositio Math., 53:3 (1984), 259–275.
MathSciNet
MATH
Google Scholar
E. B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, Cambridge, 1989.
Book
Google Scholar
E. B. Davies, Spectral Theory and Differential Operators, Cambridge University Press, Cambridge, 1995.
Book
Google Scholar
T. Ekholm and R. Frank, “On Lieb–Thirring inequalities for Schrödinger operators with virtual level”, Comm. Math. Phys., 264:3 (2006), 725–740.
MathSciNet
Article
Google Scholar
E. Gagliardo, “Ulteriori proprietà di alcune classi di funzioni in pi\‘u variabili”, Ricerche Mat., 8 (1959), 24–51.
MathSciNet
MATH
Google Scholar
Yu. V. Egorov and V. A. Kondrat’ev, On Spectral Theory of Elliptic Operators, Operator Theory: Advances and Applications, 89 Birkhäuser, Basel, 1996.
Book
Google Scholar
M. Hoffmann-Ostenhof and Th. Hoffmann-Ostenhof, “Absence of an \(L^2\)-eigenfunction at the bottom of the spectrum of the Hamiltonian of the hydrogen negative ion in the triplet S-sector”, J. Phys. A, 17 (1984), 3321–3325.
MathSciNet
Article
Google Scholar
M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, A. Laptev, and J. Tidblom, “Many-particle Hardy inequalities”, J. Lond. Math. Soc. (2), 77:1 (2008), 99–114.
MathSciNet
Article
Google Scholar
M. Hoffmann-Ostenhof, Th. Hoffmann-Ostenhof, and H. Stremnitzer, “Local properties of Coulombic wave functions”, Comm. Math. Phys., 163:1 (1994), 185–213.
MathSciNet
Article
Google Scholar
M. Hutter, On Representing (Anti)symmetric Functions, arXiv: 2007.15298.
E. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, 14 Amer. Math. Soc., Providence, RI, 2001.
MATH
Google Scholar
G. Lioni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, 181 Amer. Math. Soc., Providence, RI, 2017.
Book
Google Scholar
A. Laptev and Yu. Netrusov, “On the negative eigenvalues of a class of Schrödinger operators”, Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 189 Amer. Math. Soc., Providence, RI, 1999, 173–186.
MATH
Google Scholar
A. Laptev and T. Weidl, “Hardy Inequalities for Magnetic Dirichlet Forms”, Operator Theory: Advances and Applications, 108 Birkhäuser, Basel, 1999, 299–305.
MathSciNet
MATH
Google Scholar
D. Lundholm, “Geometric extensions of many-particle Hardy inequalities”, J. Phys. A: Math. Theor., 48:17 (2015).
MathSciNet
Article
Google Scholar
V. Maz’ya, Sobolev Spaces, Springer-Verlag, Berlin–Heidelberg–New York–Tokyo, 1985.
Book
Google Scholar
A. I. Nazarov, “Hardy–Sobolev inequalities in a cone”, J. Math. Sci., 132:4 (2006), 419–427.
MathSciNet
Article
Google Scholar
L. Nirenberg, “On elliptic partial differential equations”, Ann. Squola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115–162.
MathSciNet
MATH
Google Scholar
M. Z. Solomyak, “A remark on the Hardy inequalities”, Integral Equations Operator Theory, 19:1 (1994), 120–124.
MathSciNet
Article
Google Scholar
M. Z. Solomyak, “Piecewise-polynomial approximation of functions from \(H^l((0,1)^d)\), \(2l=d\), and applications to the spectral theory of the Schrödinger operator”, Israel J. Math., 86:1–3 (1994), 253–275.
MathSciNet
Article
Google Scholar
G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura ed Appl., 110 (1976), 353–372.
MathSciNet
Article
Google Scholar