Skip to main content
Log in

Internal Gravity Waves Excited by Motionless Perturbation Sources

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this work the authors construct the asymptotics of solutions describing internal gravity waves excited by a motionless localized perturbation source in a layer of an arbitrarily stratified medium. The analytical expressions for an individual mode in the stratified rotating medium are obtained both far from and near the wave fronts. The estimates for the effect of rotation of the stratified medium as a whole on the main characteristics of far wave fields are presented. The qualitative pattern of propagation of far wave fields is investigated. The peculiarities of wave fields at large time and limited distances are studied. It is shown that the field of internal gravity waves at large times appears to be more localized at a depth of source immersion and relatively distributed over the vertical. The impact of various parameters of the perturbation source nonlocality on the spatial patterns of far fields of internal gravity waves is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Lighthill, J., Waves in Fluids, Cambridge: Cambridge Univ. Press, 1978.

    Google Scholar 

  2. Miropol’sky, Yu.Z., Dynamics of Internal Gravity Waves in the Ocean, Shishkina, O.D., Ed., Atmospheric and Oceanographic Sciences Library, vol. 24, Berlin: Springer, 2001. https://doi.org/10.1007/978-94-017-1325-2

  3. Adcroft, A. and Campin, J.-M., MIT User Manual, Cambridge, Mass.: MIT, 2011.

    Google Scholar 

  4. Özsoy, E., Geophysical Fluid Dynamics II: Stratified / Rotating Fluid Dynamics of the Atmosphere–Ocean, Springer Textbook in Earth Sciences. Geography and Environment, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-74934-7

  5. Bulatov, V.V. and Vladimirov, Yu.V., Volny v stratifitsirovannykh sredakh (Waves in Stratified Media), Moscow: Nauka, 2015.

  6. Morozov, E.G., Oceanic Internal Tides: Observations, Analysis and Modeling: A Global View, Berlin: Springer, 2018. https://doi.org/10.1007/978-3-319-73159-9

    Book  Google Scholar 

  7. The Ocean in Motion: Circulation, Waves, Polar Oceanography, Tarakanov, R.Yu., Marchenko, A.V., and Velarde, M.G., Eds., Ocean Oceanography, Dordrecht: Springer, 2018. https://doi.org/10.1007/978-3-319-71934-4

    Book  Google Scholar 

  8. Khimchenko, E.E., Frey, D.I., and Morozov, E.G., Tidal internal waves in the Bransfield Strait, Antarctica, Russ. J. Earth Sci., 2006, vol. 20, no. 2, p. ES2006. https://doi.org/10.2205/2020es000711

  9. Belyaev, M.Yu., Desinov, L.V., Krikalev, S.K., Kumakshev, S.A., and Sekerzh-Zen’kovich, S.Ya., Identification of a system of oceanic waves based on space imagery, J. Comput. Syst. Sci. Int., 2009, vol. 48, no. 1, pp. 110–120. https://doi.org/10.1134/s1064230709010109

    Article  MathSciNet  Google Scholar 

  10. Staquet, C. and Sommeria, J., Internal gravity waves: From instabilities to turbulence, Annu. Rev. Fluid Mech., 2002, vol. 34, no. 1, pp. 559–593. https://doi.org/10.1146/annurev.fluid.34.090601.130953

    Article  ADS  MathSciNet  Google Scholar 

  11. Svirkunov, P.N. and Kalashnik, M.V., Phase patterns of dispersive waves from moving localized sources, Physics-Uspekhi, 2014, vol. 57, no. 1, pp. 80–91. https://doi.org/10.3367/ufne.0184.201401d.0089

    Article  ADS  Google Scholar 

  12. Gnevyshev, V. and Badulin, S., Wave patterns of gravity–capillary waves from moving localized sources, Fluids, 2020, vol. 5, no. 4, p. 219. https://doi.org/10.3390/fluids5040219

    Article  ADS  Google Scholar 

  13. Voelker, G.S., Myers, P.G., Walter, M., and Sutherland, B.R., Generation of oceanic internal gravity waves by a cyclonic surface stress disturbance, Dyn. Atmospheres Oceans, 2019, vol. 86, pp. 116–133. https://doi.org/10.1016/j.dynatmoce.2019.03.005

    Article  ADS  Google Scholar 

  14. Wang, H., Chen, K., and You, Y., An investigation on internal waves generated by towed models under a strong halocline, Phys. Fluids, 2017, vol. 29, no. 6, p. 65104. https://doi.org/10.1063/1.4984988

    Article  Google Scholar 

  15. Chai, J., Wang, Z., Yang, Z., and Wang, Z., Investigation of internal wave wakes generated by a submerged body in a stratified flow, Ocean Eng., 2022, vol. 266, p. 112840. https://doi.org/10.1016/j.oceaneng.2022.112840

  16. Li, T., Wan, M., Wang, J., and Chen, S., Flow structures and kinetic-potential exchange in forced rotating stratified turbulence, Phys. Rev. Fluids, 2020, vol. 5, no. 1, p. 14802. https://doi.org/10.1103/physrevfluids.5.014802

    Article  ADS  Google Scholar 

  17. Gervais, A.D., Swaters, G.E., and Sutherland, B.R., Transmission and reflection of three-dimensional Boussinesq internal gravity wave packets in nonuniform retrograde shear flow, Phys. Rev. Fluids, 2022, vol. 7, no. 11, p. 114802. https://doi.org/10.1103/physrevfluids.7.114802

  18. Abdilghanie, A.M. and Diamessis, P.J., The internal gravity wave field emitted by a stably stratified turbulent wake, J. Fluid Mech., 2013, vol. 720, pp. 104–139. https://doi.org/10.1017/jfm.2012.640

    Article  ADS  Google Scholar 

  19. Meunier, P., Le Dizès, S., Redekopp, L., and Spedding, G.R., Internal waves generated by a stratified wake: experiment and theory, J. Fluid Mech., 2018, vol. 846, pp. 752–788. https://doi.org/10.1017/jfm.2018.278

    Article  ADS  Google Scholar 

  20. Rees, T., Lamb, K.G., and Poulin, F.J., Asymptotic analysis of the forced internal gravity wave equation, SIAM J. Appl. Math., 2012, vol. 72, no. 4, pp. 1041–1060. https://doi.org/10.1137/110842892

    Article  MathSciNet  Google Scholar 

  21. Voisin, B., Limit states of internal wave beams, J. Fluid Mech., 2003, vol. 496, pp. 243–293. https://doi.org/10.1017/s0022112003006414

    Article  ADS  MathSciNet  Google Scholar 

  22. Bulatov, V.V. and Vladimirov, Yu.V., Far fields of internal gravitywaves generated by a perturbation source in a stratified rotating medium, Fluid Dyn., 2016, vol. 51, no. 5, pp. 633–638. https://doi.org/10.1134/s0015462816050070

    Article  ADS  MathSciNet  Google Scholar 

  23. Bulatov, V.V., Vladimirov, Yu.V., and Vladimirov, I.Yu., Uniform and nonuniform asymptotics of far surface fields from a flashed localized source, Fluid Dyn., 2021, vol. 56, no. 7, pp. 975–980. https://doi.org/10.1134/s001546282107003x

    Article  ADS  MathSciNet  Google Scholar 

  24. Bulatov, V.V. and Vladimirov, I.Yu., Uniform asymptotics of internal gravitational wave fields from an initial radially symmetric perturbation, Fluid Dyn., 2021, vol. 56, no. 8, pp. 1112–1118. https://doi.org/10.1134/s0015462821080103

    Article  ADS  MathSciNet  Google Scholar 

  25. Borovikov, V.A., Uniform Stationary Phase Method, IEE Electromagnetic Waves, vol. 40, London: Inst. Electrical Engineers, 1994.

  26. Kravtsov, Yu.A. and Orlov, Yu.I., Caustics as Catastrophes, Springer Series on Wave Phenomena, vol. 15, Berlin: Springer, 1999. https://doi.org/10.1007/978-3-642-59887-6

  27. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, New York: Dover, 1992.

    Google Scholar 

  28. Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge: Cambridge Univ. Press, 1995.

    Google Scholar 

Download references

Funding

The work is supported by the Russian Science Foundation, project no. 23-21-00194.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bulatov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by E. Oborin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulatov, V.V. Internal Gravity Waves Excited by Motionless Perturbation Sources. Fluid Dyn 58 (Suppl 2), S240–S252 (2023). https://doi.org/10.1134/S0015462823603133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823603133

Keywords:

Navigation