Skip to main content
Log in

Peculiarities of Pulse Dynamics in Stratified Incompressible Media

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the peculiarities of wave dynamics of pulses in incompressible stratified media are considered. It is shown that the character of pulse excitation sources of internal gravity waves is determined by the physical formulation of the problems. For the plane case and in the linear setting, two problems of wave generation for an infinitely long source homogeneous along the horizontal axis are considered. The method of asymptotic analysis of far wave field for different excitation source types is proposed for the three-dimensional case. The estimates of the time of settling the limit harmonic excitation at large distances are determined for the harmonic generation source. It is demonstrated that the effect of harmonic excitation concentration in narrow spatial regions is unlikely under conditions of the real ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Lighthill, J., Waves in Fluids, Cambridge: Cambridge Univ. Press, 1978.

    Google Scholar 

  2. Miropol’sky, Yu.Z., Dynamics of Internal Gravity Waves in the Ocean, Shishkina, O.D., Ed., Atmospheric and Oceanographic Sciences Library, vol. 24, Berlin: Springer, 2001. https://doi.org/10.1007/978-94-017-1325-2

  3. Adcroft, A. and Campin, J.-M., MIT User Manual, Cambridge, Mass.: MIT, 2011.

    Google Scholar 

  4. Özsoy, E., Geophysical Fluid Dynamics II: Stratified / Rotating Fluid Dynamics of the Atmosphere–Ocean, Springer Textbook in Earth Sciences. Geography and Environment, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-74934-7

  5. Bulatov, V.V. and Vladimirov, Yu.V., Volny v stratifitsirovannykh sredakh (Waves in Stratified Media), Moscow: Nauka, 2015.

  6. Whitham, G.B., Linear and Nonlinear Waves, New York: Wiley, 1974. https://doi.org/10.1002/9781118032954

    Book  Google Scholar 

  7. Gitterman, M., Hydrodynamics of compressible liquids: Influence of the piston effect on convection and internal gravity waves, Phys. A: Stat. Mech. its Appl., 2007, vol. 386, no. 1, pp. 1–11. https://doi.org/10.1016/j.physa.2007.08.020

  8. Staquet, C. and Sommeria, J., Internal gravity waves: From instabilities to turbulence, Annu. Rev. Fluid Mech., 2002, vol. 34, no. 1, pp. 559–593. https://doi.org/10.1146/annurev.fluid.34.090601.130953

    Article  ADS  MathSciNet  Google Scholar 

  9. Matyushin, P.V., Process of the formation of internal waves initiated by the start of motion of a body in a stratified viscous fluid, Fluid Dyn., 2019, vol. 54, no. 3, pp. 374–388. https://doi.org/10.1134/s0015462819020095

    Article  ADS  MathSciNet  Google Scholar 

  10. Chai, J., Wang, Z., Yang, Z., and Wang, Z., Investigation of internal wave wakes generated by a submerged body in a stratified flow, Ocean Eng., 2022, vol. 266, p. 112840. https://doi.org/10.1016/j.oceaneng.2022.112840

  11. Ulloa, H.N., De La Fuente, A., and Niño, Ya., An experimental study of the free evolution of rotating, nonlinear internal gravity waves in a two-layer stratified fluid, J. Fluid Mech., 2014, vol. 742, pp. 308–339. https://doi.org/10.1017/jfm.2014.10

    Article  ADS  Google Scholar 

  12. Li, T., Wan, M., Wang, J., and Chen, S., Flow structures and kinetic-potential exchange in forced rotating stratified turbulence, Phys. Rev. Fluids, 2020, vol. 5, no. 1, p. 14802. https://doi.org/10.1103/physrevfluids.5.014802

    Article  ADS  Google Scholar 

  13. Gervais, A.D., Swaters, G.E., and Sutherland, B.R., Transmission and reflection of three-dimensional Boussinesq internal gravity wave packets in nonuniform retrograde shear flow, Phys. Rev. Fluids, 2022, vol. 7, no. 11, p. 114802. https://doi.org/10.1103/physrevfluids.7.114802

  14. Abdilghanie, A.M. and Diamessis, P.J., The internal gravity wave field emitted by a stably stratified turbulent wake, J. Fluid Mech., 2013, vol. 720, pp. 104–139. https://doi.org/10.1017/jfm.2012.640

    Article  ADS  Google Scholar 

  15. Meunier, P., Le Dizès, S., Redekopp, L., and Spedding, G.R., Internal waves generated by a stratified wake: Experiment and theory, J. Fluid Mech., 2018, vol. 846, pp. 752–788. https://doi.org/10.1017/jfm.2018.278

    Article  ADS  Google Scholar 

  16. Rees, T., Lamb, K.G., and Poulin, F.J., Asymptotic analysis of the forced internal gravity wave equation, SIAM J. Appl. Math., 2012, vol. 72, no. 4, pp. 1041–1060. https://doi.org/10.1137/110842892

    Article  MathSciNet  Google Scholar 

  17. Navrotsky, V.V., Liapidevskii, V.Yu., and Pavlova, E.P., Features of internal waves in a shoaling thermocline, Int. J. Geosci., 2013, vol. 04, no. 05, pp. 871–879. https://doi.org/10.4236/ijg.2013.45081

    Article  Google Scholar 

  18. Voisin, B., Internal wave generation in uniformly stratified fluids. Part 1. Green’s function and point sources, J. Fluid Mech., 1991, vol. 231, pp. 439–480. https://doi.org/10.1017/s0022112091003464

    Article  ADS  MathSciNet  Google Scholar 

  19. Voisin, B., Internal wave generation in uniformly stratified fluids. Part 2. Moving point sources, J. Fluid Mech., 1994, vol. 261, pp. 333–374. https://doi.org/10.1017/s0022112094000364

    Article  ADS  MathSciNet  Google Scholar 

  20. Voisin, B., Limit states of internal wave beams, J. Fluid Mech., 2003, vol. 496, pp. 243–293. https://doi.org/10.1017/s0022112003006414

    Article  ADS  MathSciNet  Google Scholar 

  21. Bulatov, V.V. and Vladimirov, Yu.V., Far fields of internal gravitywaves generated by a perturbation source in a stratified rotating medium, Fluid Dyn., 2016, vol. 51, no. 5, pp. 633–638. https://doi.org/10.1134/s0015462816050070

    Article  ADS  MathSciNet  Google Scholar 

  22. Bulatov, V.V. and Vladimirov, I.Yu., Uniform asymptotics of internal gravitational wave fields from an initial radially symmetric perturbation, Fluid Dyn., 2021, vol. 56, no. 8, pp. 1112–1118. https://doi.org/10.1134/s0015462821080103

    Article  ADS  MathSciNet  Google Scholar 

  23. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, New York: Dover, 1992.

    Google Scholar 

  24. Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge: Cambridge Univ. Press, 1995.

    Google Scholar 

Download references

Funding

The work is supported by the Russian Science Foundation, project no. 23-21-00194.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bulatov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by E. Oborin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulatov, V.V. Peculiarities of Pulse Dynamics in Stratified Incompressible Media. Fluid Dyn 58 (Suppl 2), S230–S239 (2023). https://doi.org/10.1134/S001546282360311X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001546282360311X

Keywords:

Navigation