Skip to main content
Log in

Formulation of Initial-Boundary Conditions at Numerical Modeling of Wave Dynamics of Stratified Media

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

In this work the initial-boundary conditions for numerical modeling of wave dynamics of stratified media are formulated. Two concrete examples are considered that illustrate this approach to calculation of gravity wave packages far away from sources, perturbations given on some boundary of a layer of stratified medium. The proposed initial-boundary conditions given on the moving plane can be determined both experimentally and as a result of accurate numerical calculations. In the analytically obtained initial-boundary conditions, many real-world information can be imposed on the basis of which the linear theory of propagation of internal gravity waves far away from the nonlinearity regions can yield physically adequate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Lighthill, J., Waves in Fluids, Cambridge: Cambridge Univ. Press, 1978.

    Google Scholar 

  2. Adcroft, A. and Campin, J.-M., MIT User Manual, Cambridge, Mass.: MIT, 2011.

    Google Scholar 

  3. Vlasenko, V., Stashchuk, N., and Hutter, K., Baroclinic Tides, New York: Cambridge University Press, 2005. https://doi.org/10.1017/cbo9780511535932

    Book  Google Scholar 

  4. Özsoy, E., Geophysical Fluid Dynamics II: Stratified / Rotating Fluid Dynamics of the Atmosphere–Ocean, Springer Textbook in Earth Sciences. Geography and Environment, Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-74934-7

  5. Bulatov, V.V. and Vladimirov, Yu.V., Volny v stratifitsirovannykh sredakh (Waves in Stratified Media), Moscow: Nauka, 2015.

  6. Janowitz, G.S., On wakes in stratified fluids, J. Fluid Mech., 1968, vol. 33, no. 3, pp. 417–432. https://doi.org/10.1017/s0022112068001412

    Article  ADS  Google Scholar 

  7. Janowitz, G.S., Lee waves in three-dimensional stratified flow, J. Fluid Mech., 1984, vol. 148, pp. 97–108. https://doi.org/10.1017/s0022112084002263

    Article  ADS  Google Scholar 

  8. Gitterman, M., Hydrodynamics of compressible liquids: Influence of the piston effect on convection and internal gravity waves, Phys. A: Stat. Mech. its Appl., 2007, vol. 386, no. 1, pp. 1–11. https://doi.org/10.1016/j.physa.2007.08.020

  9. Staquet, C. and Sommeria, J., Internal gravity waves: From instabilities to turbulence, Annu. Rev. Fluid Mech., 2002, vol. 34, no. 1, pp. 559–593. https://doi.org/10.1146/annurev.fluid.34.090601.130953

    Article  ADS  MathSciNet  Google Scholar 

  10. Matyushin, P.V., Process of the formation of internal waves initiated by the start of motion of a body in a stratified viscous fluid, Fluid Dyn., 2019, vol. 54, no. 3, pp. 374–388. https://doi.org/10.1134/s0015462819020095

    Article  ADS  MathSciNet  Google Scholar 

  11. Gushchin, V.A. and Matyushin, P.V., Simulation and study of stratified flows around finite bodies, Comput. Math. Math. Phys., 2016, vol. 56, no. 6, pp. 1034–1047. https://doi.org/10.1134/s0965542516060142

    Article  MathSciNet  Google Scholar 

  12. Chai, J., Wang, Z., Yang, Z., and Wang, Z., Investigation of internal wave wakes generated by a submerged body in a stratified flow, Ocean Eng., 2022, vol. 266, p. 112840. https://doi.org/10.1016/j.oceaneng.2022.112840

  13. Ulloa, H.N., De La Fuente, A., and Niño, Ya., An experimental study of the free evolution of rotating, nonlinear internal gravity waves in a two-layer stratified fluid, J. Fluid Mech., 2014, vol. 742, pp. 308–339. https://doi.org/10.1017/jfm.2014.10

    Article  ADS  Google Scholar 

  14. Li, T., Wan, M., Wang, J., and Chen, S., Flow structures and kinetic-potential exchange in forced rotating stratified turbulence, Phys. Rev. Fluids, 2020, vol. 5, no. 1, p. 14802. https://doi.org/10.1103/physrevfluids.5.014802

    Article  ADS  Google Scholar 

  15. Gervais, A.D., Swaters, G.E., and Sutherland, B.R., Transmission and reflection of three-dimensional Boussinesq internal gravity wave packets in nonuniform retrograde shear flow, Phys. Rev. Fluids, 2022, vol. 7, no. 11, p. 114802. https://doi.org/10.1103/physrevfluids.7.114802

  16. Abdilghanie, A.M. and Diamessis, P.J., The internal gravity wave field emitted by a stably stratified turbulent wake, J. Fluid Mech., 2013, vol. 720, pp. 104–139. https://doi.org/10.1017/jfm.2012.640

    Article  ADS  Google Scholar 

  17. Rees, T., Lamb, K.G., and Poulin, F.J., Asymptotic Analysis of the Forced Internal Gravity Wave Equation, SIAM J. Appl. Math., 2012, vol. 72, no. 4, pp. 1041–1060. https://doi.org/10.1137/110842892

    Article  MathSciNet  Google Scholar 

  18. Broutman, D., Brandt, L., Rottman, J.W., and Taylor, C.K., A WKB derivation for internal waves generated by a horizontally moving body in a thermocline, Wave Motion, 2021, vol. 105, p. 102759. https://doi.org/10.1016/j.wavemoti.2021.102759

  19. Bouruet-Aubertot, P.I. and Thorpe, S.A., Numerical experiments on internal gravity waves in an accelerating shear flow, Dyn. Atmospheres Oceans, 1999, vol. 29, no. 1, pp. 41–63. https://doi.org/10.1016/s0377-0265(98)00055-4

    Article  ADS  Google Scholar 

  20. Broutman, D. and Rottman, J.W., A simplified Fourier method for computing the internal wavefield generated by an oscillating source in a horizontally moving, depth-dependent background, Phys. Fluids, 2004, vol. 16, no. 10, pp. 3682–3689. https://doi.org/10.1063/1.1785140

    Article  ADS  Google Scholar 

  21. Meunier, P., Le Dizès, S., Redekopp, L., and Spedding, G.R., Internal waves generated by a stratified wake: Experiment and theory, J. Fluid Mech., 2018, vol. 846, pp. 752–788. https://doi.org/10.1017/jfm.2018.278

    Article  ADS  Google Scholar 

  22. Hurley, D.G., A general method for solving steady-state internal gravity wave problems, J. Fluid Mech., 1972, vol. 56, no. 4, pp. 721–740. https://doi.org/10.1017/s0022112072002629

    Article  ADS  MathSciNet  Google Scholar 

  23. Zakharov, V.E., Dyachenko, A.I., and Vasilyev, O.A., New method for numerical simulation of a nonstationary potential flow of incompressible fluid with a free surface, Eur. J. Mech. – B/Fluids, 2002, vol. 21, no. 3, pp. 283–291. https://doi.org/10.1016/s0997-7546(02)01189-5

    Article  MathSciNet  Google Scholar 

  24. Bulatov, V. and Vladimirov, Yu., Generation of internal gravity waves far from moving non-local source, Symmetry, 2020, vol. 12, no. 11, p. 1899. https://doi.org/10.3390/sym12111899

    Article  ADS  Google Scholar 

  25. Bulatov, V.V. and Vladimirov, Yu.V., Far fields of internal gravitywaves generated by a perturbation source in a stratified rotating medium, Fluid Dyn., 2016, vol. 51, no. 5, pp. 633–638. https://doi.org/10.1134/s0015462816050070

    Article  ADS  MathSciNet  Google Scholar 

  26. Bulatov, V.V. and Vladimirov, I.Yu., Uniform asymptotics of internal gravitational wave fields from an initial radially symmetric perturbation, Fluid Dyn., 2021, vol. 56, no. 8, pp. 1112–1118. https://doi.org/10.1134/s0015462821080103

    Article  ADS  MathSciNet  Google Scholar 

  27. White, R.B., Asymptotic Analysis of Differential Equations, London: Imperial College Press, 2010. https://doi.org/10.1142/p735

    Book  Google Scholar 

Download references

Funding

The work is supported by the Russian Science Foundation, project no. 23-21-00194.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Bulatov.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by E. Oborin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulatov, V.V. Formulation of Initial-Boundary Conditions at Numerical Modeling of Wave Dynamics of Stratified Media. Fluid Dyn 58 (Suppl 2), S200–S209 (2023). https://doi.org/10.1134/S0015462823603091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823603091

Keywords:

Navigation