Skip to main content
Log in

Analysis of the Causes of the Inverse Population of Atomic Argon Levels in Condensing Supersonic Flows of Mixtures

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The features of argon radiation mixed with molecular and atomic additives in condensing supersonic jets are analyzed. Mixtures of argon (95%) with methane (5%) and argon (95%) with monosilane (5%) are used. The mixture’s particles are activated by a well-focused electron beam. The dependence of the radiation intensity of individual argon lines on the gas-dynamic parameters in the jet is studied. In a certain pressure range, different various compositions of mixtures, not only anomalously intense emission was recorded on individual spectral lines of argon (ArI) in mixtures with methane and monosilane, but also the role of clusters of a certain size and composition was revealed. At the same time, a similar effect is not detected in the spectrum of argon (ArII) ions. It is established that the cause of the anomaly is a highly efficient molecular cluster mechanism of the selective excitation of the individual levels of argon atoms, which is absent in noncondensing jets and weakens at the stage of the formation of large clusters. The main channels of energy transmission are reviewed and discussed. Based on the data obtained, an empirical model of the excitation-emission process is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Khmel, S.Ya. and Sharafutdinov, R.G., Proc. 15th Europhysics Conf. on Atomic and Molecular Physics of Ionized Gases (ESCAMPIG 15), Miskolc-Lillafüred, Aug. 26–30, 2000, vol. 24A, p. 384.

  2. Sharafutdinov, R.G. and Khmel, S.Ya., Abnormal optical emissions in a condensing monosilane–argon gas jet activated by electron beam plasma, Plasma Chem. Plasma Process., 2003, vol. 23, no. 3, pp. 463–488. https://doi.org/10.1023/A:1023230931546

    Article  Google Scholar 

  3. Golomb, D. and Good, R.E., Clusters in isentropically expanding nitric oxide and their effect on the chemiluminous NO–O reaction, J. Chem. Phys., 1986, vol. 49, pp. 4176–4180. https://doi.org/10.1063/1.1670732

    Article  ADS  Google Scholar 

  4. Madirbaev, V.Zh., Zarvin, A.E., Korobeishchikov, N.G., and Sharafutdinov, R.G., Ion-cluster reactions initiated by an electron beam in mixtures of argon with methane and monosilane, Phys. Solid State, 2002, vol. 44, no. 3, pp. 515–517. https://doi.org/10.1134/1.1462691

    Article  ADS  Google Scholar 

  5. Dubrovin, K.A., Zarvin, A.E., Kalyada, V.V., and Yaskin, A.S., Causes of the glow of the anomalous secondary flow in supersonic clustered jets excited by a high-voltage electron beam, Tech. Phys. Lett., 2020, vol. 46, no. 4, pp. 337–340. https://doi.org/10.1134/S1063785020040057

    Article  ADS  Google Scholar 

  6. Zarvin, A.E., Khudozhitkov, V.E., Dubrovin, K.A., Kalyada, V.V., and Yaskin, A.S., Plasma chemical reactions initiation in supersonic jets by a high-voltage electron beam, J. Phys.: Conf. Ser., 2020, vol. 1683, no. 032008. https://doi.org/10.1088/1742-6596/1683/3/032008

  7. Zarvin, A.E., Kalyada, V.V., Madirbaev, V.Zh., Korobeishchikov, N.G., Khodakov, M.D., Yaskin, A.S., Khudozhitkov, V.E., and Gimelshein, S.F., Condensable supersonic jet facility for analyses of transient low-temperature gas kinetics and plasma chemistry of hydrocarbons, IEEE Trans. Plasma Sci., 2017, vol. 45, no. 5, pp. 819–827. https://doi.org/10.1109/TPS.2017.2682901

    Article  ADS  Google Scholar 

  8. Korobeishchikov, N.G., Zarvin, A.E., and Madirbaev, V.Z., Hydrodynamics of pulsed supersonic underexpanded jets: spatiotemporal characteristics, Tech. Phys., 2004, vol. 49, no. 8, pp. 973–981.

    Article  Google Scholar 

  9. Kazakov, V.V., Kazakov, V.G., Kovalev, V.S., Meshkov, O.I., and Yatsenko, A.S., Electronic structure of atoms: atomic spectroscopy information system, Phys. Scripta, 2017, vol. 92, p. 105002. https://doi.org/10.1088/1402-4896/aa822e

  10. Zarvin A.E. and Sharafutdinov R.G., On the formation of supersonic molecular beam with skimmer // Rarefied Gas Dynamics. Ed. R. Campargue. Paris, France. Proceedings of 11th International Symposium, 1979, vol. II, pp. 991–1000.

  11. Zarvin, A.E., Kalyada, V.V., Madirbaev, V.Zh., Korobeishchikov, N.G., Khodakov, M.D., Yaskin, A.S., Khudozhitkov, V.E., and Gimelshein, S.F., Condensable supersonic jet facility for analyses of transient low-temperature gas kinetics and plasma chemistry of hydrocarbons, IEEE Trans. Plasma Sci., 2017, vol. 45, no. 5, pp. 819–827. https://doi.org/10.1109/TPS.2017.2682901

    Article  ADS  Google Scholar 

  12. Smith, J.A. and Driscoll, J.F., The electron-beam fluorescence technique for measurements in hypersonic turbulent flows, J. Fluid Mech., 1975, vol. 72, part 4, pp. 695–719.

    Article  ADS  Google Scholar 

  13. Zarvin, A.E., Khudozhitkov, V.E., and Kalyada, V.V., Features of the methane clusters formation in supersonic jets of methane and its mixtures with monatomic gases, IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 387, p. 012086. https://doi.org/10.1088/1757-899X/387/1/012086

  14. Khudozhitkov, V.E., Zarvin, A.E., and Kalyada, V.V., The role of carrier gas in cluster formation in methane supersonic jets, J. Phys.: Conf. Ser., 2018, vol. 1105, p. 012112. https://doi.org/10.1088/1742-6596/1105/1/012112

  15. Korobeishchikov, N.G., Zarvin, A.E., Madirbaev, V.Zh., and Sharafutdinov, R.G., Condensation of argon, monosilane and their mixtures in a pulse free jet, Plasma Chem. Plasma Proc., 2005, vol. 25, no. 4, pp. 319–349. https://doi.org/10.1007/s11090-004-3132-9

    Article  Google Scholar 

  16. Hagena, O.F. and Obert, W., Cluster formation in expanding supersonic jets: effect of pressure, temperature, nozzle size, and test gas, J. Chem. Phys., 1972, vol. 56, no. 5, pp. 1793–1802. https://doi.org/10.1063/1.1677455

    Article  ADS  Google Scholar 

  17. Zarvin, A.E., Madirbaev, V.Zh., Korobeishchikov, N.G., Gartvich, G.G., and Sharafutdinov, R.G., Effect of small methane and monosilane additives on clustering in pulsed supersonic argon jets, Tech. Phys., 2005, vol. 50, no. 11, pp. 1444–1450.

    Article  Google Scholar 

  18. Korobeishchikov, N.G., Zarvin, A.E., Kalyada, V.V., and Schmakov, A.A., Pulsed gas jets for formation of high-intensity cluster beams, Adv. Mater. Phys. Chem., 2012, vol. 2, pp. 31–34. https://doi.org/10.4236/ampc.2012.24B009

    Article  Google Scholar 

  19. Golomb, D., Good, R.E., Bailey, A.B., Busby, M.R., and Dawbarn, R., Dimers, clusters, and condensation in free jets. II, J. Chem. Phys., 1972, vol. 57, no. 9, pp. 3844–3852. https://doi.org/10.1063/1.1678854

    Article  ADS  Google Scholar 

  20. Smirnov, B.M., Generation of cluster beams, Phys. Usp., 2003, vol. 46, no. 6, pp. 589–628. https://doi.org/10.1070/PU2003v046n06ABEH001381

    Article  ADS  Google Scholar 

  21. Bird, G.A., Transition regime behavior of supersonic beam skimmers, Phys. Fluids, 1976, vol. 19, pp. 1486–1491. https://doi.org/10.1063/1.861351

    Article  ADS  Google Scholar 

  22. Zarvin A.E. and Sharafutdinov R.G., Influence of a stream perturbation before the skimmer on molecular-beam parameters, J. Appl. Mech. Tech. Phys., 1978, vol. 19, pp. 321–324. https://doi.org/10.1007/BF00850814

  23. Verheijen, M.J., Beijerinck, H.C.W., Renes, W.A., and Verster, N.F., A quantitative description of skimmer interaction in supersonic secondary beams: calibration of absolute intensities, Chem. Phys., 1984, vol. 85, no. 1, pp. 63–71. https://doi.org/10.1016/S0301-0104(84)85173-3

    Article  Google Scholar 

  24. Schütte, S. and Buck, U., Strong fragmentation of large rare gas clusters by high energy electron impact, Int. J. Mass Spectrom., 2002, vol. 220, no. 2, pp. 183–192.

    Article  Google Scholar 

  25. NIST Chemistry WebBook. https://webbook.nist.gov/chemistry/. https://doi.org/10.18434/T4D303

  26. Kislyakov N.I., Rebrov A.K., Sharafutdinov R.G. Structure of high-pressure low-density jets beyond a supersonic nozzle, J. Appl. Mech. Tech. Phys., 1975, no. 2, pp. 187–194.

  27. Hagena, O.F., Nucleation and growth of clusters in expanding nozzle flows, Surf. Sci., 1981, vol. 106, no. 1–3, pp. 101–116. https://doi.org/10.1016/0039-6028(81)90187-4

    Article  ADS  Google Scholar 

  28. Buck, U. and Krohne, R., Cluster size determination from diffractive He atom scattering, J. Chem. Phys., 1996, vol. 105, no. 13, pp. 5408–5415. https://doi.org/10.1063/1.472406

    Article  ADS  Google Scholar 

  29. Striganov, A.R. and Sventitskii, N.S., Tables of Spectral Lines of Neutral and Ionized Atoms, New York: Plenum, 1968.

    Book  Google Scholar 

  30. Berry, R.S. and Smirnov, B.M., Phase transitions and adjacent phenomena in simple atomic systems, Phys. Usp., 2007, vol. 48, no. 4, pp. 345–388. https://doi.org/10.1070/PU2005v048n04ABEH002022

    Article  ADS  Google Scholar 

  31. Zhukhovitskii, D.I., Molecular dynamics study of cluster evolution in supersaturated vapor, J. Chem. Phys., 1995, vol. 103, pp. 9401–9407. https://doi.org/10.1063/1.470000

    Article  ADS  Google Scholar 

  32. Bernstein, E.R., Dynamics and photochemistry of neutral Van der Waals clusters, Annu. Rev. Phys. Chem., 1995, vol. 46, pp. 197–222.

    Article  ADS  Google Scholar 

  33. Baletto, F., Ferrando, R., Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects, Rev. Mod. Phys., 2005, vol. 77, no. 1, pp. 371–423.

    Article  ADS  Google Scholar 

  34. Lundwall, M., Lindblad, A., Bergersen, H., Rander, T., Öhrwall, G., Tchaplyguine, M., Peredkov, S., Svensson, S., and Björneholm, O., Photon energy dependent intensity variations observed in Auger spectra of free argon clusters, J. Phys. B: At. Mol. Opt. Phys., 2006, vol. 39, pp. 3321–3333. https://doi.org/10.1088/0953-4075/39/16/015

    Article  ADS  Google Scholar 

  35. Lundwall, M., Fink, R.F., Tchaplyguine, M., Lindblad, A., Öhrwall, G., Bergersen, H., Peredkov, S., Rander, T., Svensson, S., and Björneholm, O., Shell-dependent core-level chemical shifts observed in free xenon clusters, J. Phys. B: At. Mol. Opt. Phys., 2006, vol. 39, pp. 5225–5235. https://doi.org/10.1088/0953-4075/39/24/018

    Article  ADS  Google Scholar 

  36. Malins, A., Williams, S.R., Eggers, J., Tanaka, H., and Royall, C.P., The effect of inter-cluster interactions on the structure of colloidal clusters, J. Non-Cryst. Solids, 2011, vol. 357, no. 2, pp. 760–766. https://doi.org/10.1016/j.jnoncrysol.2010.08.021

    Article  ADS  Google Scholar 

  37. Richter, C., Hollas, D., Saak, C.-M., Förste, M., Miteva, T., Mucke, M., Björneholm, O., Sisourat, N., Slavíček, P., and Hergenhahn, U., Competition between proton transfer and intermolecular Coulombic decay in water, Nat. Commun., 2018, vol. 9, p. 4988. https://doi.org/10.1038/s41467-018-07501-6

    Article  ADS  Google Scholar 

  38. Aladi, M., Bolla, R., Rácz, P., and Földes, I.B., Noble gas clusters and nanoplasmas in high harmonic generation, Nucl. Instr. Meth. Phys. Res. B, 2016, vol. 369, pp. 68–71. https://doi.org/10.1016/j.nimb.2015.10.061

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Experimental equipment was provided by the Center for Collective Use “Applied Physics” of the Faculty of Physics, Novosibirsk State University.

Funding

This study was supported by the Russian Science Foundation, project no. 22-11-00080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Zarvin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarvin, A.E., Madirbaev, V.Z., Dubrovin, K.A. et al. Analysis of the Causes of the Inverse Population of Atomic Argon Levels in Condensing Supersonic Flows of Mixtures. Fluid Dyn 58, 1668–1683 (2023). https://doi.org/10.1134/S0015462823602747

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823602747

Keywords:

Navigation