Skip to main content
Log in

Body Shape Optimisation for Enhanced Aerodynamic Cooling

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The study considers a two-dimensional flow of a viscous perfect gas around thermally insulated bodies. Using a composite Bézier curve to describe various body shapes and leveraging a reinforcement learning algorithm, we identify optimal shapes that minimise two distinct objective functions reflecting local or global surface temperature. We show that even at the Reynolds number \({\text{Re}} = 200\), Mach number M = 0.4, and Prandtl number \({\text{Pr}} = 0.72\), one can observe surface temperatures dropping below the free-stream value—a phenomenon known as aerodynamic cooling or the Eckert–Weise effect. The lowest local temperatures are attained at the rear of slender cross-flow plates, exhibiting a time-averaged recovery factor of –0.26, contrasting with 0.31 observed in the canonical flow around a circular cylinder. However, such shapes are not optimal in terms of the surface-averaged temperature of the body—boomerang-like shapes yield the lowest overall temperatures, with a global recovery factor of 0.34, in contrast to 0.63 for the circular cylinder. By independently varying the frontal and rear parts of the body, we propose a rationale behind these optimal shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Eckert, E. and Weise, W., Messungen der temperaturverteilung auf der oberfläche schnell angeströmter unbeheizter körper, Forsch. Ingenieurwes., 1942, vol. 13, no. 6, pp. 246‒254. https://doi.org/10.1007/BF02585343

    Article  Google Scholar 

  2. Ryan, L.F., Experiments on aerodynamic cooling, PhD Thesis, Zurich: Swiss Federal Institute of Technology, 1951.

  3. Leont’ev, A.I., Gas-dynamic method of energy separation of gas flows, High Temp., 1997, vol. 35, no. 1, pp. 155–157.

    Google Scholar 

  4. Eiamsa-ard, S. and Promvonge, P., Review of Ranque–Hilsch effects in vortex tubes, Renew. Sustain. Energy Rev., 2008, vol. 12, no. 7, pp. 1822–1842. https://doi.org/10.1016/j.rser.2007.03.006

    Article  Google Scholar 

  5. Leontiev, A.I., Zditovets, A.G., Vinogradov, Y.A., Strongin, M.M., and Kiselev, N.A., Experimental investigation of the machine-free method of temperature separation of air flows based on the energy separation effect in a compressible boundary layer, Exp. Therm. Fluid Sci., 2017, vol. 88, pp. 202–219. https://doi.org/10.1016/j.expthermflusci.2017.05.021

    Article  Google Scholar 

  6. Leontiev, A.I., Zditovets, A.G., Kiselev, N.A., Vinogradov, Yu.A., and Strongin, M.M., Experimental investigation of energy (temperature) separation of a high-velocity air flow in a cylindrical channel with a permeable wall, Exp. Therm. Fluid Sci., 2019, vol. 105, pp. 206–215. https://doi.org/10.1016/j.expthermflusci.2019.04.002

    Article  Google Scholar 

  7. Vinogradov, Yu.A., Zditovets, A.G., Kiselev, N.A., and Popovich, S.S., Experimental study of energy separation in compressible air cross flow over a pair of side-by-side circular cylinders, Fluid Dyn., 2023, vol. 58, no. 2, pp. 252–262. https://doi.org/10.1134/S0015462822602017

    Article  ADS  Google Scholar 

  8. Azanov, G.M. and Osiptsov, A.N., The efficiency of one method of machineless gasdynamic temperature stratification in a gas flow, Int. J. Heat Mass Transfer, 2017, vol. 106, pp. 1125–1133. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.090

    Article  Google Scholar 

  9. Golubkina, I.V. and Osiptsov, A.N., Compressible gas-droplet flow and heat transfer behind a condensation shock in an expanding channel, Int. J. Therm. Sci., 2022, vol. 179, p. 107576. https://doi.org/10.1016/j.ijthermalsci.2022.107576

  10. Kurosaka, M., Gertz, J.B., Graham, J.E., Goodman, J.R., Sundaram, P., Riner, W.C., Kuroda, H., and Hankey, W.L., Energy separation in a vortex street, J. Fluid Mech., 1987, vol. 178, pp. 1–29. https://doi.org/10.1017/S0022112087001095

    Article  ADS  Google Scholar 

  11. Thomann, H., Measurements of the recovery temperature in the wake of a cylinder and of a wedge at Mach numbers between 0.5 and 3, Technical Report, National Aeronautical Research Institute (FFA), 1959, no. 84.

  12. Eckert, E.R.G., Cross transport of energy in fluid streams, Wärme Stoffübertrag., 1987, vol. 21, nos. 2–3, pp. 73–81. https://doi.org/10.1007/BF01377562

  13. Ng, W.F., Chakroun, W.M., and Kurosaka, M., Time-resolved measurements of total temperature and pressure in the vortex street behind a cylinder, Phys. Fluids A: Fluid Dyn., 1990, vol. 2, no. 6, pp. 971–978. https://doi.org/10.1063/1.857604

    Article  ADS  Google Scholar 

  14. Goldstein, R.J. and Kulkarni, K.S., Energy separation in the wake of a cylinder, J. Heat Transfer, 2008, vol. 130, no. 6, pp. 061703-1–061703-9. https://doi.org/10.1115/1.2891222

    Article  Google Scholar 

  15. Kulkarni K. and Goldstein, R., Energy separation in the wake of a cylinder: effect of Reynolds number and acoustic resonance, Int. J. Heat Mass Transfer, 2009, vol. 52, nos. 17–18, pp. 3994–4000. https://doi.org/10.1016/j.ijheatmasstransfer.2009.03.024

    Article  Google Scholar 

  16. Aleksyuk, A.I. and Osiptsov, A.N., Direct numerical simulation of energy separation effect in the near wake behind a circular cylinder, Int. J. Heat Mass Transfer, 2018, vol. 119, pp. 665–677. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.133

    Article  Google Scholar 

  17. Aleksyuk, A.I., Influence of vortex street structure on the efficiency of energy separation, Int. J. Heat Mass Transfer, 2019, vol. 135, pp. 284–293. https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.103

    Article  Google Scholar 

  18. Aleksyuk, A.I., The Eckert–Weise effect and energy separation under the flow interference behind side-by-side cylinders, J. Fluid Mech., 2021, vol. 915, p. A95. https://doi.org/10.1017/jfm.2021.128

    Article  ADS  MathSciNet  Google Scholar 

  19. Aleksyuk, A.I., Regions of reduced total enthalpy in the near wake of a body in a viscous gas flow, Fluid Dyn., 2022, vol. 57, no. 1, pp. 66–76. https://doi.org/10.1134/S0015462822010013

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, J., Du, X., and Martins, J.R., Machine learning in aerodynamic shape optimization, Progr. Aerospace Sci., 2022, vol. 134, p. 100849. https://doi.org/10.1016/j.paerosci.2022.100849

  21. Sutton, R.S., Barto, A.G., and Bach, F., Reinforcement Learning: an Introduction. 2nd ed., Cambridge, MA: MIT Press, 2018.

    Google Scholar 

  22. Viquerat, J., Rabault, J., Kuhnle, A., Ghraieb, H., Larcher, A., and Hachem, E., Direct shape optimization through deep reinforcement learning, J. Comput. Phys., 2021, vol. 482, p. 110080. https://doi.org/10.1016/j.jcp.2020.110080

  23. Hui, X., Wang, H., Li, W., Bai, J., and Qin, F., Multi-object aerodynamic design optimization using deep reinforcement learning, AIP Adv., 2021, vol. 11, no. 8, p. 085311. https://doi.org/10.1063/5.0058088

  24. Dussauge, T.P., Sung, W.J., Pinon Fischer, O.J., and Mavris, D.N., A reinforcement learning approach to airfoil shape optimization, Sci. Rep., 2023, vol. 13, no. 1, p. 9753. https://doi.org/10.1038/s41598-023-36560-z

    Article  ADS  Google Scholar 

  25. Lou, J., Chen, R., Liu, J., Bao, Y., You, Y., and Chen, Z., Aerodynamic optimization of airfoil based on deep reinforcement learning, Phys. Fluids, 2023, vol. 35, no. 3, p. 037128. https://doi.org/10.1063/5.0137002

  26. Dai, J., Liu, P., Qu, Q., and Li, L., Aerodynamic optimization of high-lift devices using a 2D-to-3D optimization method based on deep reinforcement learning and transfer learning, Aerospace Sci. Technol., 2022, vol. 121, p. 107348. https://doi.org/10.1016/j.ast.2022.107348

  27. Brunton, S.L., Noack, B.R., and Koumoutsakos, P., Machine learning for fluid mechanics, Annu. Rev. Fluid Mech., 2020, vol. 52, no. 1, pp. 477–508. https://doi.org/10.1146/annurev-fluid-010719-060214

    Article  ADS  MathSciNet  Google Scholar 

  28. Vignon, C., Rabault, J., and Vinuesa, R., Recent advances in applying deep reinforcement learning for flow control: perspectives and future directions, Phys. Fluids, 2023, vol. 35, no. 3, p. 031301. https://doi.org/10.1063/5.0143913

  29. Geuzaine, C. and Remacle, J.-F., Gmsh: a 3-D finite element mesh generator with built-in pre- and postprocessing facilities, Int. J. Numer. Meth. Eng., 2009, vol. 79, no. 11, pp. 1309–1331. https://doi.org/10.1002/nme.2579

    Article  Google Scholar 

  30. Moxey, D., Cantwell, C.D., Bao, Y., Cassinelli, A., Castiglioni, G., Chun, S., Juda, E., Kazemi, E., Lackhove, K., Marcon, J., Mengaldo, G., Serson, D., Turner, M., Xu, H., Peiró, J., Kirby, R.M., and Sherwin, S.J., Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods, Comput. Phys. Commun., 2020, vol. 249, p. 107110. https://doi.org/10.1016/j.cpc.2019.107110

  31. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O., Proximal Policy Optimization Algorithms, 2017.

  32. Towers, M., Terry, J.K., Kwiatkowski, A.,Balis, J.U., de Cola, G., Deleu, T., Goulão, M., Kallinteris, A.K.G., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J.J., Shen, A.T.J., and Younis, O.G., Gymnasium Zenodo, 2023.

  33. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N., Stable-baselines3: reliable reinforcement learning implementations, J. Mach. Learn. Res., 2021, vol. 22, no. 268, pp. 1–8.

    Google Scholar 

Download references

Funding

The research was supported by the Russian Science Foundation (project no. 19-19-00234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Aleksyuk.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksyuk, A.I. Body Shape Optimisation for Enhanced Aerodynamic Cooling. Fluid Dyn 58, 1420–1430 (2023). https://doi.org/10.1134/S0015462823602437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823602437

Keywords:

Navigation