Skip to main content
Log in

Numerical and Experimental Studies on Curvature-Induced Behavior of Detonation Waves in an Annular Channel

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

To elucidate the influence of curvature on the mechanism governing stable detonation waves, this study delves into the experimental and numerical exploration of gaseous detonations within an annular channel utilizing a 2H2/O2/3Ar mixture. The investigation encompasses both empirical observations of the cellular structure of the detonation wave through a soot-coated stainless-steel plate and numerical simulations employing advanced methodologies. To capture the intricacies of the detonation phenomenon, the second-order additive semi-implicit Runge–Kutta method and the fifth-order weighted essentially non-oscillatory (WENO) scheme are adeptly employed for discretizing the time and spatial derivatives, respectively. The underlying chemical reactions during detonation are meticulously modeled using a detailed reaction mechanism. The pressure and velocity contours unveiling a nuanced picture are extracted using a numerical analysis. The inner wall divergence effect emerges as a critical determinant, weakening the detonation strength and consequently yielding the larger cellular structures. Contrarily, the outer wall convergence effect significantly amplifies the strength yielding the smaller cellular structures. This intricate interplay causes the detonation velocity to increase progressively along the radial direction. Furthermore, near the inner wall the detonation wave manifests periodic phases of augmentation and attenuation, resulting in oscillations in both the velocity and the pressure. A granular scrutiny of the flow field finer attributes underscores the continuous regeneration and dissolution of triple points along the wave front. Notably, triple point regeneration predominantly occurs near the outer wall surface, while their dissipation is more proximate to the inner wall. In the context of the stable detonation wave, equilibrium between triple point regeneration and decay sustains a constant triple point count on the wave front. This pivotal equilibrium enables the self-sustaining propagation of detonation within the annular channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Smirnov, N.N., Nikitin, V.F., Stamov, L.I., Mikhalchenko, E.V., and Tyurenkova, V.V., Rotating detonation in a ramjet engine three-dimensional modeling, Aerosp. Sci. Technol., 2018, vol. 81, pp. 213−224.

    Article  Google Scholar 

  2. Smirnov, N.N., Nikitin, V.F., Stamov, L.I., Mikhalchenko, E.V., and Tyurenkova, V.V., Three-dimensional modeling of rotating detonation in a ramjet engine, Acta Astronaut., 2019, vol. 163, pp. 168–176.

    Article  ADS  Google Scholar 

  3. Betelin, V.B., Nikitin, V.F., and Mikhalchenko, E.V., 3D numerical modeling of a cylindrical RDE with an inner body extending out of the nozzle, Acta Astronaut., 2020, vol. 176, pp. 628–646.

    Article  ADS  Google Scholar 

  4. Nikitin, V.F. and Mikhalchenko, E.V., Safety of a rotating detonation engine fed by acetylene–oxygen mixture launching stage, Acta Astronaut., 2022, vol. 194, pp. 496–503.

    Article  ADS  Google Scholar 

  5. Shepherd, J.E., Structural response of piping to internal gas detonation, J. Pressure Vessel Technol., 2009, vol. 131, no. 3, pp. 031204.

  6. Uchida, M., Suda, T., Fujimori, T., and Inagaki, T., Pressure loading of detonation waves through 90-degree bend in high pressure H2−O2−N2 mixtures, Proc. Combust. Inst., 2011, vol. 33, no. 2, pp. 2327−2333.

    Article  Google Scholar 

  7. Zhuravskaya, T.A. and Levin, V.A., Control of detonation wave in a channel with obstacles using preliminary gas mixture preparation, Fluid Dyn., 2020, vol. 55, pp. 488−497.

    Article  ADS  MathSciNet  Google Scholar 

  8. Egoryan, A.D. and Kraiko, A.N., Comparison of air-breathing engines with slow and detonation combustion, Fluid Dyn., 2020, vol. 55, pp. 264−278.

    Article  ADS  MathSciNet  Google Scholar 

  9. Pan, Z.H., Fan, B.C., Zhang, X.D., Gui, M.Y., and Dong G., Wavelet pattern and self–sustained mechanism of gaseous detonation, Combust. Flame, 2011, vol. 158, no. 11, pp. 2220–2228.

    Article  ADS  Google Scholar 

  10. Melguizo-Gavilanes, J., Rodriguez, V., Vidal, P., and Zitoun, R., Dynamics of detonation transmission and propagation in a curved chamber: a numerical and experimental analysis, Combust. Flame, 2021, vol. 223, pp. 460–473.

    Article  ADS  Google Scholar 

  11. Pan, Z.H., Zhang, Z.H., Zhang, P.G., and Zhu, M.H., Experimental investigation and comparison of flame acceleration, hot spot ignition, and initiation of detonation in curved and straight channels, Combust. Flame, 2022, vol. 242, pp. 112–154.

  12. Tunik, Y.V., Numerical modeling of detonation combustion of hydrogen–air mixtures in a convergent-divergent nozzle, Fluid Dyn., 2010, vol. 45, pp. 264−270.

    Article  ADS  MathSciNet  Google Scholar 

  13. Nakayama, H., Moriya, T., Kasahara, J., Matsuo, A., Sasamoto, Y., and Funaki, I., Stable detonation wave propagation in rectangular-cross-section curved channels, Combust. Flame, 2012, vol. 159, no. 2, pp. 859−869.

    Article  ADS  Google Scholar 

  14. Xia, Z.J., Ma, H., Zhuo, C.F., and Zhou, C.S., Propagation process of H2/air rotating detonation wave and influence factors in plane-radial structure, Int. J. Hydrogen Energy, 2018, vol. 43, no. 9, pp. 4609−4622.

    Article  Google Scholar 

  15. Pan, Z.H., Qi, J., Pan, J.F., Zhang, P.G., Zhu, Y.J., and Gui, M.Y., Fabrication of a helical detonation channel: Effect of initial pressure on the detonation propagation modes of ethylene–oxygen mixtures, Combust. Flame, 2018, vol. 192, pp. 1–9.

    Article  ADS  Google Scholar 

  16. Nakayama, H., Kasahara, J., Matsuo, A., and Funaki, I., Front shock behavior of stable curved detonation waves in rectangular-cross-section curved channels, Proc. Combust. Inst., 2013, vol. 34, no. 2, pp. 1939−1947.

    Article  Google Scholar 

  17. Lee, S.H., Jo, D.R., and Choi, J.Y., Effect of curvature on the detonation wave propagation characteristics in annular channels, AIAA Paper, 2008, p. 988.

  18. Tunik, Y.V., Detonation combustion of hydrogen in a convergent-divergent nozzle with a central coaxial cylinder, Fluid Dyn., 2014, vol. 49, pp. 688−693.

    Article  ADS  Google Scholar 

  19. Li, J., Ning, J.G., Zhao, H., Hao, L., and Wang, C., Numerical investigation on the propagation mechanism of steady cellular detonations in curved channels. Chin. Phys. Lett., 2015, vol. 32, no. 4, p. 048202.

  20. Thomas, G. and Williams, R., Detonation interaction with wedges and bends, Shock Waves, 2002, vol. 11, no. 5, pp. 481−492.

    Article  ADS  Google Scholar 

  21. Sugiyama, Y., Nakayama, Y., Matsuo, A., Nakayama, H., and Kasahara, J., Numerical investigation on detonation propagation in a two-dimensional curved channel, Combust. Sci. Technol., 2014, vol. 186, pp. 1662−1679.

    Article  Google Scholar 

  22. Zhang, X.D., Fan, B.C., Pan, Z.H., and Gui, M.Y., Experimental and numerical study on detonation propagating in an annular cylinder, Combust. Sci. Technol., 2012, vol. 184, pp. 1708−1717.

    Article  Google Scholar 

  23. Rodriguez, V., Jourdain, C., Vidal, P., and Zitoun, R., An experimental evidence of steadily-rotating overdriven detonation, Combust. Flame, 2019, vol. 202, no. 4, pp. 132–142.

    Article  ADS  Google Scholar 

  24. Radulescu, M.I. and Lee, J.H.S., The failure mechanism of gaseous detonations: experiments in porous wall tubes, Combust. Flame, 2002, vol. 131, no. 1–2, pp. 29–46.

    Article  ADS  Google Scholar 

  25. Nikitin, V.F., Mikhalchenko, E.V., Stamov, L.I., Tyurenkova, V.V., and Smirnov, N.N., Evolution of the cellular structure of detonation waves under the condition of non-uniform initiation, Acta Astronaut., 2023, vol. 213, pp. 156–167.

    Article  ADS  Google Scholar 

  26. Smirnov, N.N., Nikitin, V.F., Mikhalchenko, E.V., Stamov, L.I., and Tyurenkova, V.V., Modelling cellular structure of detonation waves in hydrogen–air mixtures, Int. J. Hydrogen Energy, 2023, in press. https://doi.org/10.1016/j.ijhydene.2023.08.184

  27. Gordon, S. and McBride, D.J., A computer program for complex chemical equilibrium compositions–incident and reflected shocks and Chapman–Jouguet detonations, 1971, Report No. SP–273.

  28. Jiang, G.S. and Shu, C.W., Efficient implementation of weighted ENO schemes. J. Comput. Phys., 1996, vol. 126, no. 1, pp. 202–228.

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhong, X.L., Additive semi-implicit Runge–Kutta methods for computing high-speed nonequilibrium reactive flows, J. Comput. Phys., 1996, vol. 128, no. 1, pp. 19–31.

    Article  ADS  MathSciNet  Google Scholar 

  30. Smirnov, N.N., Betelin, V.B., Nikitin, V.F., Stamov, L.I., and Altoukhov, D.I., Accumulation of errors in numerical simulations of chemically reacting gas dynamics, Acta Astronaut., 2015, vol. 117, pp. 338–355.

    Article  ADS  Google Scholar 

  31. Smirnov, N.N., Betelin, V.B., Shagaliev, R.M., Nikitin, V.F., Belyakov, I.M., Deryuguin, Y.N., Aksenov, S.V., Korchazhkin, D.A., Stamov, L.I., and Altoukhov, D.I., Hydrogen fuel rocket engines simulation using LOGOS code, Int. J. Hydrogen Energy, 2014, vol. 39, pp. 10748–10756.

    Article  Google Scholar 

  32. Oran, E.S., Weber, Jr.J.W., Stefaniw, E.I., Lefebvre, M.H., and Anderson, Jr.J.D., A numerical study of a two-dimensional H2–O2–Ar detonation using a detailed chemical reaction model, Combust. Flame, 1998, vol. 113, nos. 1–2, pp. 147–163.

    Article  ADS  Google Scholar 

  33. Oran, E.S., Young, T.R., Boris, J.P., and Cohen, A., Weak and strong ignition. I. Numerical simulations of shock tube experiments, Combust. Flame, 1982, vol. 48, pp. 135–148.

    Article  ADS  Google Scholar 

  34. Eckett, C.A., Numerical and analytical studies of the dynamic of gaseous detonation, 2001, CA, USA: California Institute of Technology.

    Google Scholar 

  35. Short, M., Chiquete, C., and Quirk, J., Propagation of a stable gaseous detonation in a circular arc configuration, Proc. Combust. Inst., 2019, vol. 37, no. 3, pp. 3593–3600.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China under Grant no. 51876084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Zhang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z.H., Zhou, J., Jiang, N. et al. Numerical and Experimental Studies on Curvature-Induced Behavior of Detonation Waves in an Annular Channel. Fluid Dyn (2024). https://doi.org/10.1134/S0015462823602255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0015462823602255

Keywords:

Navigation