Skip to main content
Log in

Bifurcation Analysis of the Macroscopic Traffic Flow Model Based on Driver’s Anticipation and Traffic Jerk Effect

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Based on realistic traffic conditions, the macroscopic traffic flow model that considers the driver’s anticipation and traffic jerk effect is improved, and the bifurcation theory is used to describe and predict nonlinear traffic phenomena on the road from the perspective of global stability. Firstly, the linear stability conditions and the Korteweg–de Vries–Burgers equation are derived using linear and nonlinear methods to characterize the evolution of traffic flow. The type and stability of the equilibrium solution are discussed using the bifurcation analysis method, and the conditions of existence of the Hopf bifurcation and saddle-node bifurcation are proved. Numerical simulations show that the model can describe the complex nonlinear dynamic phenomena observed on the road. The bifurcation analysis will be helpful for improving our understanding of stop-and-go and sudden changes in stability in real traffic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Karakhi, A., Laarej, A., Khallouk, A., Lakouari, N., and Ez-Zahraouy, H., Car accident in synchronized traffic flow: a stochastic cellular automaton model, Int. J. Mod. Phys. C, 2021, vol. 32, no. 1.

  2. Vranken, T., Sliwa, B., Wietfeld, C., and Schreckenberg, M., Adapting a cellular automata model to describe heterogeneous traffic with human-driven, automated, and communicating automated vehicles, Phys. A, 2021, vol. 570, no. 1.

  3. Yang, Q.L., Modelling the variation and uncertainty problem of right-turn-on-red queue in a variety of conflicting environments, Appl. Math. Model., 2023, vol. 116, pp. 415‒440.

    Article  MathSciNet  Google Scholar 

  4. Ai, W.H., Zhu, J.N., Zhang, Y.F., Wang, M.M., and Liu, D.W., Bifurcation control analysis based on continuum model with lateral offset compesation, Phys. A, 2023, vol. 624, p. 128961.

  5. Ai, W.H., Ma, Y.F., and Liu, D.W., Bifurcation analysis based on new macro two-velocity difference model, Int. J. Geom. Methods M, 2022, vol. 19, no. 14.

  6. Bando, M., Hasebe, K., Nakayama, A., Shibata, A., and Sugiyama, Y., Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 1995, vol. 51, no. 2, pp. 1035‒1042.

    Article  ADS  Google Scholar 

  7. Helbing, D., Derivation of non-local macroscopic traffic equations and consistent traffic pressures from microscopic car-following models, C.I.M.E. Summer School, 2009, vol. 69, no. 4, pp. 539‒548.

    Google Scholar 

  8. Yu, X., Analysis of the stability and density waves for traffic flow, Chin. Phys. B, 2002, vol. 11, no. 11, pp. 1128‒1134.

    Article  Google Scholar 

  9. Liu, D., Shi, Z.K., and Ai, W.H., An improved car-following model accounting for impact of strong wind, Math. Probl. Eng., 2017, vol. 2017, no. 10, pp. 1‒12.

    Google Scholar 

  10. Lighthill, M.J. and Whitham, G.B., On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. R. Soc. A: Math., Phys. Eng. Sci., 1955, vol. 229, no. 1178, pp. 317‒345.

    Google Scholar 

  11. Richards, P.I., Shock waves on the highways, Oper. Res., 1956, vol. 4, no. 1, pp. 42‒51.

    Article  MathSciNet  Google Scholar 

  12. Payne, H.J., Freflo: a macroscopic simulation model of freeway traffic, Transportation Research Record, Transportation Research Board, 1979, issue 772.

  13. Whitham., G.B., Linear and Nonlinear Waves, New York: Wiley-Intersci., 1974.

  14. Aw, A. and Rascle, M., Resurrection of second order models of traffic flow, Siam J. Appl. Math., 2000, vol. 60, no. 3, pp. 916‒938.

    Article  MathSciNet  Google Scholar 

  15. Rascle, M., An improved macroscopic model of traffic flow: derivation and links with the Lighthill–Whitham model, Math. Comput. Model., 2002, vol. 35, no. 5, pp. 581‒590.

    Article  MathSciNet  Google Scholar 

  16. Zhang, H.M., A theory of nonequilibrium traffic flow, Transp. Res., Part B: Methodol., 1998, vol. 32, no. 7, pp. 485‒498.

    Article  Google Scholar 

  17. Jiang, R., Wu, Q., and Zhu, Z., A new continuum model for traffic flow and numerical tests, Transp. Res., Part B: Methodol., 2002, vol. 36, no. 5, pp. 405‒419.

    Article  Google Scholar 

  18. Kiselev, A.B., Kokoreva, A.V., Nikitin, V.F., and Smirnov, N.N., Mathematical modelling of traffic flows on controlled roads, J. Appl. Math. Mech., 2004, vol. 68, no. 6, pp. 933‒939.

    Article  Google Scholar 

  19. Kiselev, A.B., Kokoreva, A.V., Nikitin, V.F., and Smirnov, N.N., Mathematical simulation of two-lane traffic flow controlled by traffic lights, Moscow Univ. Mech. Bull., 2006, vol. 61, no. 4, pp. 1‒7.

    Google Scholar 

  20. Kiselev, A.B., Nikitin, V.F., Smirnov, N.N., and Yumashev, M.V., Irregular traffic flow on a ring road, J. Appl. Math. Mech., 2000, vol. 64, no. 4, pp. 627‒634.

    Article  Google Scholar 

  21. Bogdanova, A., Smirnova, M.N., Zhu, Z.J., and Smirnov, N.N., Exploring peculiarities of traffic flows with a viscoelastic model, Transportmetrica ‒ Transp. Sci., 2015, vol. 11, no. 7, pp. 561‒578.

    Google Scholar 

  22. Smirnova, M.N., Bogdanova, A.I., Zhu, Z., and Smirnov, N.N., Traffic flow sensitivity to visco-elasticity, Theor. Appl. Mech. Lett., 2016, vol. 6, no. 4, pp. 182‒185.

    Article  Google Scholar 

  23. Zhang, Y.L., Smirnova, M.N., Bogdanova, A.I., Zhu, Z.J., and Smirnov, N.N., Travel time prediction with viscoelastic traffic model, Appl. Math. Mech.-Engl., 2018, vol. 39, no. 12, pp. 1769‒1788.

    Google Scholar 

  24. Zhang, Y.L., Smirnova, M.N., Bogdanova, A.I., Zhu, Z.J., and Smirnov, N.N., Travel time estimation by urgent-gentle class traffic flow model, Transp. Res. B. ‒ Meth., 2018, vol. 113, pp. 121‒142.

    Google Scholar 

  25. Hu, Z.J., Smirnova, M.N., Zhang, Y.L., Smirnov, N.N., and Zhu, Z.J., Estimation of travel time through a composite ring road by a viscoelastic traffic flow model, Math. Comput. Simul., 2021, vol. 181, pp. 501‒521.

    Article  MathSciNet  Google Scholar 

  26. Huang, Z.M., Smirnova, M.N., Bi, J.R., Smirnov, N.N., and Zhu, Z.J., Analyzing roadway work zone effects on vehicular flow in a freeway ring, Int. J. Mod. Phys. C, 2023, vol. 34, no. 4.

  27. Hu, Z.J., Smirnova, M.N., Smirnov, N.N., Zhang, Y.L., and Zhu, Z.J., Impacts of down-up hill segment on the threshold of shock formation of ring road vehicular flow, Adv. Appl. Math. Mech., 2023, vol. 15, no. 5, pp. 1315‒1334.

    Article  MathSciNet  Google Scholar 

  28. Li, Z.M., Smirnova, M.N., Zhang, Y.L., Smirnov, N.N., and Zhu, Z.J., Numerical exploration of freeway tunnel effects with a two-lane traffic model, Simul. T. Soc. Mod. Sim., 2023, vol. 99, no. 1, pp. 55‒68.

    Google Scholar 

  29. Li, Z.M., Smirnova, M.N., Zhang, Y.L., Smirnov, N.N., and Zhu, Z.J., Tunnel speed limit effects on traffic flow explored with a three lane model, Math. Comput. Simul., 2022, vol. 194, pp. 185‒197.

    Article  MathSciNet  Google Scholar 

  30. Schot, S.H., Jerk: the time rate of change of acceleration, Am. J. Phys., 1998, vol. 46, no. 11, pp. 1090‒1094.

    Article  ADS  Google Scholar 

  31. Redhu, P. and Siwach, V., An extended lattice model accounting for traffic jerk, Phys. A, 2018, vol. 492, pp. 1473‒1480.

    Article  MathSciNet  Google Scholar 

  32. Liu, Y., Cheng, R.J., Lei, L., and Ge, H.X., The influence of the non-motor vehicles for the car-following model considering traffic jerk, Phys. A, 2016, vol. 463, pp. 376‒382.

    Article  MathSciNet  Google Scholar 

  33. Sun, F.X., Wang, J.F., Cheng, R.J., and Ge, H.X., An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds, Phys. Lett. A, 2018, vol. 382, no. 7, pp. 489‒498.

    Article  ADS  Google Scholar 

  34. Wan, J., Huang, X., Qin, W.Z., Gu, X.G., and Zhao, M., An Improved lattice hydrodynamic model by considering the effect of backward-looking and anticipation behavior, Complexity, 2021, vol. 2021, p. 4642202.

  35. Tian, J.F., Yuan, Z.Z., Jia, B., Li, M.H., and Jiang, G.J., The stabilization effect of the density difference in the modified lattice hydrodynamic model of traffic flow, Phys. A, 2012, vol. 391, no. 19, pp. 4476‒4482.

    Article  Google Scholar 

  36. Zhao, M., Sun, D.H., and Tian, C., Density waves in a lattice hydrodynamic traffic flow model with the anticipation effect, Chin. Phys. B, 2012, vol. 21, no. 4, pp. 623‒628.

    Google Scholar 

  37. Yu, L. and Zhou, B.C., The burgers equation for a new continuum model with consideration of driver’s forecast effect, J. Appl. Math., 2014, vol. 2014, pp. 1‒7.

    Google Scholar 

  38. Li, Z.B., Traveling Wave Solution of Nonlinear Mathethematical Physics Equations, Science Press, 2007.

    Google Scholar 

  39. Lai, L.L., Cheng, R.J., Li, Z.P., and Ge, H.X., The KdV–Burgers equation in a modified speed gradient continuum model, Chin. Phys. B, 2013, vol. 22, no. 6, pp. 293‒297.

    Article  Google Scholar 

  40. Liu, H.Q., Zheng, P.J., Zhu, K.Q., and Ge, H.X., KdV–Burgers equation in the modified continuum model considering anticipation effect, Phys. A, 2015, vol. 438, pp. 26‒31.

    Article  MathSciNet  Google Scholar 

  41. Ai, W.H., Zhang, T., and Liu, D.W., Bifurcation analysis of macroscopic traffic flow model based on the influence of road conditions, Appl. Math.-Czech., 2023, vol. 68, no. 4, pp. 499‒534.

    Google Scholar 

  42. Ai, W.H., Research on Branch Analysis Method of Traffic Flow Nonlinear Phenomenon, Northwestern Polytechnical Univ., 2016.

    Google Scholar 

  43. Igarashi, Y., Itoh, K., Nakanishi, K., Ogura, K., and Yokokawa, K., Bifurcation phenomena in the optimal velocity model for traffic flow, Phys. Rev. E, 2001, vol. 64, no. 4.

  44. Li, T., Nonlinear dynamics of traffic jams, Phys. D, 2005, vol. 207, no. 1, pp. 41‒51.

    Article  ADS  MathSciNet  Google Scholar 

  45. Delgado, J. and Saavedra, P., Global bifurcation diagram for the Kerner-Konhauser traffic flow model, Int. J. Bifurcation Chaos, 2015, vol. 25, no. 5.

  46. Ai, W.H., Shi, Z.K., and Liu, D.W., Bifurcation analysis of a speed gradient continuum traffic flow model, Phys. A, 2015, vol. 437, pp. 418‒429.

    Article  MathSciNet  Google Scholar 

  47. Cheng, L.F., Wei, X.K., and Cao, H.J., Two-parameter bifurcation analysis of limit cycles of a simplified railway wheelset model, Nonlin. Dyn., 2018, vol. 93, no. 4, pp. 2415‒2431.

    Article  Google Scholar 

  48. Ai, W.H., Zhu, J.N., Duan, W.S., and Liu, D.W., A new heterogeneous traffic flow model based on lateral distance headway, Int. J. Mod. Phys. B, 2021, vol. 35, no. 23, pp. 1‒19.

    Article  MathSciNet  Google Scholar 

  49. Ai, W.H., Li, N., Duan, W.S., Tian, R.H., and Liu, D.W., Bifurcation analysis of a modified continuum traffic flow model considering driver’s reaction time and distance, Int. J. Mod. Phys. C, 2023, vol. 34, no. 3.

  50. Liu, G., Lyrintzis, A., and Michalopoulos, P., Improved high-order model for freeway traffic flow, Transp. Res. Rec., 1998, vol. 1644, no. 1, pp. 37‒46.

    Article  Google Scholar 

  51. Kurtze, D.A. and Hong, D.C., Traffic jams, granular flow, and soliton selection, Phys. Rev. E, 1995, vol. 52, no. 1, pp. 218‒221.

    Article  ADS  Google Scholar 

  52. Nagatani, T., The physics of traffic jams, Rep. Prog. Phys., 2002, vol. 65, no. 9, pp. 1331‒1386.

    Article  ADS  Google Scholar 

  53. Helbing, D. and Tilch, B., Generalized force model of traffic dynamics, Condens. Matter, 1998, vol. 58, no. 1, pp. 133‒138.

    ADS  Google Scholar 

  54. Berg, P. and Woods, A., On-ramp simulations and solitary waves of a car-following model, Phys. Rev. E, 2001, vol. 64, no. 3.

  55. Aulbach, B. and Wanner, T., The Hartman–Grobman theorem for Caratheodory-type differential equations in Banach spaces, Nonlin. Anal.-Theor., 2000, vol. 40, no. 1, pp. 91‒104.

    Google Scholar 

  56. Kerner, B.S. and Konhuser, P., Cluster effect in initially homogeneous traffic flow, Phys. Rev. E, 1993, vol. 48, no. 4, pp. 2335‒2338.

    Article  ADS  Google Scholar 

  57. Cao, J.F., Han, C.Z., and Fang, X.W., Theory and Application of Nonlinear Systems, Xi’an Jiaotong Univ. Press, 2006.

    Google Scholar 

  58. Daganzo, C.F. and Laval, J.A., Moving bottlenecks: A numerical method that converges in flows, Transp. Res. B- Meth., 2005, vol. 39, no. 9, pp. 855‒863.

  59. Shuming, R., Traffic speed measurement based on video, Comput. Commun., 2007, vol. 25, pp. 90‒93.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees and the editor for their valuable opinions.

Funding

This work is partially supported by the National Natural Science Foundation of China under the Grants nos. 72361031 and 12275223 and the Qizhi Personnel Training Support Project of Lanzhou Institute of Technology (project no. 2018QZ-11) and the University Youth Doctoral Support Project of Gansu Province of China under the Grant no. 2023QB-049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Ai.

Ethics declarations

The authors declared that they have no conflicts of interest in this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, W.H., Xu, L., Zhang, T. et al. Bifurcation Analysis of the Macroscopic Traffic Flow Model Based on Driver’s Anticipation and Traffic Jerk Effect. Fluid Dyn 58, 1395–1419 (2023). https://doi.org/10.1134/S0015462823601249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823601249

Keywords:

Navigation