Skip to main content
Log in

Numerical Study of Gas-Dynamic and Thermal Processes in a Pulsed Electric Discharge

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The processes accompanying the formation of a contracted (columnar) high-current nanosecond electric discharge in subcentimeter gaps filled with nitrogen are numerically investigated in this work. The space between two flat electrodes is considered in the case when a potential difference of 25 kV is instantly established between them. The voltage is applied for a time interval of 200 ns and then instantly removed. The characteristics of the nonthermal and thermal stages of electric-discharge development are studied, namely: the formation and growth of a streamer, the closure of a discharge gap by a streamer, the formation of a plasma channel, secondary ionization waves, and an increase in current density and temperature in the axial region of the channel. After switching off the electric field, the gas-dynamic processes associated with the discharge thermal effect on a neutral gas are investigated. Gas-dynamic processes are determined by the propagation of shock waves and rarefaction waves in the radial direction with respect to the axis of symmetry. The quantitative values of both the electric field (electron density and intensity) and gas-dynamic parameters (temperature, pressure, and gas velocity) are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Moscow: Nauka. Gl. red. fiz.-mat. lit., 1987.

  2. Surzhikov, S.T., Fizicheskaya mekhanika gazovykh razryadov (Physical Mechanics of Gas Discharges), Moscow: Bauman Moscow State Technical Univ., 2006.

  3. Bazelyan, A.E. and Bazelyan, E.M., Cathode-directed streamer in the air under pulse discharges with nanosecond rise time, Teplofiz. Vys. Temp., 1993, vol. 31, no. 6, pp. 867‒874.

    Google Scholar 

  4. Georghiou, G.E., Papadakis, A.P., Morrow, A., and Metaxas, A.C., Numerical model ling of atmospheric pressure gas discharge sleading to plasma production, J. Phys. D. Appl. Phys., 2005, vol. 38, pp. R303–R328.

    Article  ADS  Google Scholar 

  5. Golota, V.I., Dotsenko, Yu.V., Karas’, V.I., Manuilenko, O.V., and Pis’menetskii, A.S., Simulation of negative streamer in nitrogen, Vopr. At. Nauki Tekhn., Ser. Plazmennaya Elektron. Nov. Metody Uskor., 2010, vol. 7, no. 4, pp. 176–180.

    Google Scholar 

  6. Tholin, F. and Bourdon, A., Simulation of the hydrodynamic expansion following a nanosecond pulsed spark discharge in air at atmospheric pressure, J. Phys. D: Appl. Phys., 2013, vol. 46, p. 365205.

  7. Kulikovsky, A.A., The structure of streamers in N2. I: Fast method of space-charge dominated plasma simulation, J. Phys. D: Appl. Phys., 1994, vol. 27, pp. 2556–2563.

    Article  ADS  Google Scholar 

  8. Qin, J. and Pasko, V., On the propagation of streamers in electrical discharges, J. Phys. D: Appl. Phys., 2014, vol. 47, p. 435202.

  9. Kim, H.C., Iza, F., Yang, S.S., et al., Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects, J. Phys. D. Appl. Phys., 2005, vol. 38, pp. R283–R301.

    Article  Google Scholar 

  10. Li, C., Ebert, U., and Brok, W.J.M., Avalanche-to-streamer transition in plasma simulations, IEEE Trans. Plasma Sci., 2008, vol. 36, pp. 910–911.

    Article  ADS  Google Scholar 

  11. Bazelyan, E.M. and Raizer, Yu.P., Streamer channel increase: field and plasma density behind the ionization wave, initializing electrons before it, Teplofiz. Vys. Temp., 1997, vol. 35, no. 2, pp. 181–186.

    Google Scholar 

  12. Xu, D.A., Shneider, M.N., Lacoste, D.A., and Laux, C.O., Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air, J. Phys. D: Appl. Phys., 2014, vol. 47, p. 235202.

  13. Agnihotri, A., Hundsdorfer, W., and Ebert, U., Coupling discharge and gas dynamics in stream-less spark formation in supercritical N2, Jpn. J. Appl. Phys., 2016, vol. 55, p. 07LD06.

  14. Raizer, Yu.P. and Surzhikov, S.T., Model for computing heat and electric discharge processes in technological lasers’ chambers, Mat. Model., 1993, vol. 5, no. 3, pp. 32–58.

    MathSciNet  Google Scholar 

  15. Ermakov, E.A., Ivanov, I.E., Kryukov, I.A., Mursenkova, I.V., and Znamenskaya, I.A., Numerical simulation of nanosecond discharge in gas-dynamic flows, J. Phys.: Conf. Ser., 2020, vol. 1647, no. 6, p. 012015.

  16. Korytchenko, K.V., Essmann, S., Markus, D., Maas, U., and Poklonskii, E.V., Numerical and experimental investigation of the channel expansion of a low-energy spark in the air, Combust. Sci. Technol., 2019, vol. 191, no. 12, pp. 2136–2161.

    Article  Google Scholar 

  17. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov, G.P., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki (Numerical Solution of Multidimensional Problems of Gas Dynamics), Moscow: Nauka, 1976.

  18. Ivanov, I.E. and Kryukov, I.A., Quasi monotonous method of increased level of accuracy for calculating internal and fluid flows of nonviscous gas, Mat. Model., 1996, vol. 8, no. 6, pp. 47–55.

    MathSciNet  Google Scholar 

  19. Kulikovsky, A.A., The structure of streamers in N2. II: Two-dimensional simulation, J. Phys. D: Appl. Phys., 1994, vol. 27, pp. 2564‒2569.

    Article  ADS  Google Scholar 

  20. Znamenskaya, I.A., Mursenkova, I.V., Naumov, D.S., and Sysoev, N.N., A pulsed volume discharge localized in a vortex zone behind a wedge in a supersonic flow, Moscow Univ. Phys. Bull., 2019, vol. 74, no. 5, pp. 514–520.

    Article  ADS  Google Scholar 

  21. Mursenkova, I.V., Liao, Y., Ivanov, I.E., and Sysoev, N.N., The characteristics of a nanosecond surface sliding discharge in a supersonic airflow flowing around a thin wedge, Moscow Univ. Phys. Bull., 2019, vol. 74, no. 3, pp. 269–276.

    Article  ADS  Google Scholar 

  22. Surzhikov, S.T., Numerical simulation of electrodynamic structure of two kinds of glow discharges, Fiz.-Khim. Kinet. Gaz. Din., 2008, vol. 7. http://chemphys.edu.ru/issues/2008-7/articles/464/.

  23. Storozhev, D.A., Kuratov, S.E., and Surzhikov, S.T., Numerical simulation of 2D structure of the glow discharge in molecular hydrogen by considering ionization and dissociation kinetics, Fiz.-Khim. Kinet. Gaz. Din., 2015, vol. 16, issue 4. http://chemphys.edu.ru/issues/2015-16-4/articles/566/.

  24. Surzhikov, S.T. and Kuratov, S.E., Drift-diffusion model of the Penning discharge at pressures about 1 Torr, Fiz.-Khim. Kinet. Gaz. Din., 2014, vol. 15, issue 5. http://chemphys.edu.ru/issues/2014-15-5/articles/252/.

  25. Znamenskaya, I.A., Ivanov, I.E., Kryukov, I.A., Mursenkova, I.V., and Timokhin, M.Yu., Numerical and experimental investigation of the shock-wave structure formed by nanosecond discharge in helium, Fiz.-Khim. Kinet. Gaz. Din., 2014, vol. 15, issue 3. http://chemphys.edu.ru/issues/2014-15-3/articles/222/.

Download references

Funding

The work was carried out with financial support of the Russian Science Foundation (project 18-19-00672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ermakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermakov, E.A., Ivanov, I.E. Numerical Study of Gas-Dynamic and Thermal Processes in a Pulsed Electric Discharge. Fluid Dyn 58, 745–758 (2023). https://doi.org/10.1134/S0015462823601055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823601055

Keywords:

Navigation