Skip to main content
Log in

Modeling the Motion, Ablation, and Energy Deposition of a Meteoroid in the Atmosphere Taking into Account the Curvilinearity of the Trajectory

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of modeling the motion, ablation, and energy deposition of a meteoroid or its fragments moving as a single body is considered. A computer program for calculating the system of meteor physics equations by the Runge–Kutta method is created and tested. The equations take into account the curvilinearity of the trajectory of the meteor body, gravity, and a change in the heat-transfer coefficient along the trajectory. Test calculations are performed for meteor bodies of various sizes moving in the atmosphere. A change in the trajectory angle with respect to the horizon depending on the initial parameters of entry into the atmosphere is shown. The effect of taking into account the variability of the trajectory angle on a change in the velocity, mass loss, kinetic energy, and trajectory of the meteoroid is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Grigoryan, S.S., Meteorites motion and destruction in planet atmospheres, Cosmic Res., 1979, vol. 17, no. 6, pp. 875–893. http://adsabs.harvard.edu/abs/1980CosRe..17..724G

    Google Scholar 

  2. Melosh, H.J., Atmospheric breakup of terrestrial impactors, Proc. Lunar Planet. Sci. A, 1981, vol. 12, pp. 29–35. http://adsabs.harvard.edu/full/1981mrbf.conf…29M

    Google Scholar 

  3. Chyba, C.F., Thomas, P.J., and Zahnle, K.J., The 1908 Tunguska explosion – atmospheric disruption of a stony asteroid, Nature, 1993, vol. 361, pp. 40–44. https://www.nature.com/articles/361040a0

    Article  ADS  Google Scholar 

  4. Hills, J.G. and Goda, M.P., The fragmentation of small asteroids in the atmosphere, Astron. J., 1993, vol. 105, no. 3, pp. 1114–1144. http://adsabs.harvard.edu/full/1993AJ….105.1114H

    Article  ADS  Google Scholar 

  5. Grigoryan, S.S., Ibodov, F.S., and Ibadov, S.I., Physical mechanism of Chelyabinsk superbolide explotion, Solar Syst. Res., 2013, vol. 47, pp. 268–274. https://doi.org/10.1134/S0038094613040151

    Article  ADS  Google Scholar 

  6. Brykina, I.G., Large meteoroid fragmentation: modelling the interaction of the Chelyabinsk meteoroid with the atmosphere, Solar Syst. Res., 2018, vol. 52, pp. 426–434.

    Article  ADS  Google Scholar 

  7. Brykina, I.G., Bragin, M.D., and Egorova, L.A., On models of meteoroids fragmentation in the atmosphere, Fiz.-Khim. Kinet. Gaz. Din., 2019, vol. 20, issue 2. http://chemphys.edu.ru/issues/2019-20-2/articles/822/

  8. Baldwin, B. and Sheaffer, Y., Ablation and breakup of large meteoroids during atmospheric entry, J. Geophys. Res., 1971, vol. 76, pp. 4653–4668. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA076i019p04653

    Article  ADS  Google Scholar 

  9. Nemchinov, I.V. and Popova, O.P., An analysis of the 1947 Sikhote-Alin event and a comparison with the phenomenon of February 1, 1994, Solar Syst. Res., 1997, vol. 31, pp. 408–420. https://ui.adsabs.harvard.edu/abs/1997SoSyR..31..408N/abstract

    ADS  Google Scholar 

  10. Ceplecha, Z., Borovička, J., Elford, W.G., ReVelle, D.O., Hawkes, R.L., Porubcan, V.Í., and Šimek, M., Meteor phenomena and bodies, Space Sci. Rev., 1998, vol. 84, pp. 327–471. https://link.springer.com/article/10.1023%2FA%3A1005069928850

    Article  ADS  Google Scholar 

  11. ReVelle, D.O., NEO fireball diversity: energetics-based entry modelling and analysis techniques, in Proc. Int. Astronomical Union Symp., Cambridge Univ. Press, 2007, vol. 236, pp. 95–106. https://doi.org/10.1017/S1743921307003122

  12. Avramenko, M.I., Glazyrin, I.V., Ionov, G.V., and Karpeev, A.V., Simulation of the airwave caused by the Chelyabinsk superbolide, J. Geophys. Res. Atmos., 2014, vol. 119, pp. 7035–7050. https://doi.org/10.1002/2013JD021028

    Article  ADS  Google Scholar 

  13. Ceplecha, Z. and ReVelle, D.O., Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere, Meteorit. Planet. Sci., 2005, vol. 40, pp. 35–54. https://doi.org/10.1111/j.1945-5100.2005.tb00363.x

    Article  ADS  Google Scholar 

  14. Borovička, J., Toth, J., Igaz, A., Spurny, P., Kalenda, P., Haloda, J., Svoren, J., Kornos, L., Silber, E., Brown, P., and Husarik, M., The Košice meteorite fall: atmospheric trajectory, fragmentation, and orbit, Meteorit. Planet. Sci., 2013, vol. 48, pp. 1757–1779. https://doi.org/10.1111/maps.12078

    Article  ADS  Google Scholar 

  15. Borovička, J., Spurny, P., Brown, P., Wiegert, P., Kalenda, P., Clark, D., and Shrbeny, L., The trajectory, structure and origin of the Chelyabinsk asteroidal impactor, Nature, 2013, vol. 503, pp. 235–237. https://doi.org/10.1038/nature12671

    Article  ADS  Google Scholar 

  16. Wheeler, L.F., Register, P.J., and Mathias, D.L., A fragment-cloud model for asteroid breakup and atmospheric energy deposition, Icarus, 2017, vol. 295, pp. 149–169. https://doi.org/10.1016/j.icarus.2017.02.011

    Article  ADS  Google Scholar 

  17. Borovička, J., Popova, O., and Spurný, P., The Maribo CM2 meteorite fall – survival of weak material at high entry speed, Meteorit. Planet. Sci., 2019, vol. 54, pp. 1024–1041. https://doi.org/10.1111/maps.13259

    Article  ADS  Google Scholar 

  18. Bronshten, V.A., Fizika meteornykh yavlenii (Physics of Meteoric Phenomena), Moscow: Nauka, 1981.

  19. Stulov, V.P., Mirskii, V.N., and Vislyi, A.I., Aerodinamika bolidov (Fire-balls Aerodynamics), Moscow: Nauka, 1995.

  20. Meshcherskii, I.V., Raboty po dinamike tel peremennoi massy (Scientific Works on Variable-Mass Body Dynamics), Moscow: Izd. Tekhniko-Teoreticheskoy Literatury, 1952.

  21. Astapovich, I.S., Meteornye yavleniya v atmosphere Zemli (Meteor Phenomena in the Earth’s Atmosphere), Moscow: Izv. Fiz.-Mat. Lit., 1958.

  22. Levin, B.Yu., Fizicheskaya teoriya meteorov i meteornoe veshchestvo v solnechnoi sisteme (Physical Theory of Meteors and Meteor Matter in the Solar System), Moscow: USSR Acad. Sci., 1956.

  23. Brykina, I.G. and Egorova, L.A., Approximation formulas for the radiative heat flux at high velocities, Fluid Dyn., 2019, vol. 54, pp. 562–574. https://doi.org/10.1134/S0015462819040037

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Johnston, C.O., Mazaheri, A., Gnoffo, P., Kleb, B., Sutton, K., Prabhu, D., Brandis, A.M., and Bose, D., Radiative heating uncertainty for hyperbolic Earth entry, part 1: flight simulation modeling and uncertainty, J. Spacecraft Rockets, 2013, vol. 50, no 1, pp. 19–38. https://doi.org/10.2514/1.A32254

    Article  ADS  Google Scholar 

  25. Brykina, I.G. and Bragin, M.D., On models of meteoroid disruption into the cloud of fragments, Planet. Space Sci., 2020, vol. 187, no. 104942. https://doi.org/10.1016/j.pss.2020.104942

  26. Turchak, L.I., Osnovy chislennykh metodov: uchebnoe posobie dlya studentov vuzov (Foundations of Numerical Methods. Student’s Book for Universities), Moscow: Vysshaya Shkola, 1987.

  27. Brykina, I.G. and Tirskiy, G.A., Mass loss and light curve of a large meteoroid. Analytical solution, J. Appl. Math. Mech., 2017, vol. 81, pp. 395–408. https://doi.org/10.1016/j.jappmathmech.2018.03.008

    Article  MathSciNet  MATH  Google Scholar 

  28. Suttles, J.T., Sullivan, E.M., and Margolis, S.B., Curve fits of predicted inviscid stagnation-point radiative heating rates, cooling factors, and shock standoff distances for hyperbolic earth entry, NASA Technical Note, 1974, no. D-7622. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740021216.pdf.

Download references

Funding

The work was carried out in accordance with the research plan of the Institute of Mechanics of Moscow State University, with partial support by the Russian Foundation for Basic Research, project no. 18-01-00740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Brykina.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brykina, I.G., Egorova, L.A. Modeling the Motion, Ablation, and Energy Deposition of a Meteoroid in the Atmosphere Taking into Account the Curvilinearity of the Trajectory. Fluid Dyn 58, 701–711 (2023). https://doi.org/10.1134/S0015462823600979

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823600979

Keywords:

Navigation