Skip to main content
Log in

Direct Statistical Monte Carlo Simulation of Argon Radiation Behind the Front of a Strong Shock Wave

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

We describe a technique for modeling the excitation of electronic levels, bremsstrahlung, and photoionization in the Monte Carlo method of direct statistical simulation. The simulation results are compared with known experimental and numerical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bird, G., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford, Cl, 1994.

  2. Sobol’, I.M., Chislennye metody Monte-Karlo (Monte Carlo Numerical Methods), Moscow: Nauka, 1973.

  3. Kusov, A.L., Numerical simulation of flow-round the spherical nose cylinder by means of direct statistical Monte Carlo simulation, Mat. Model., 2015, vol. 27, no. 12, pp. 33–47.

    MathSciNet  MATH  Google Scholar 

  4. Direct simulation Monte Carlo (DSMC) method, in Heat and Mass Transfer, Berlin, Heidelberg: Springer, 2005, pp. 275–315.

  5. Dunn, S.M. and Anderson, J.B., Direct Monte Carlo simulation of chemical reaction systems: internal energy transfer and an energy-dependent unimolecular reaction, J. Chem. Phys., 1993, vol. 99, no. 9, pp. 6607–6612.

    ADS  Google Scholar 

  6. Bruno, D., Capitelli, M., Esposito, F., Longo, S., and Minelli, P., Direct simulation of non-equilibrium kinetics under shock conditions in nitrogen, Chem. Phys. Lett., 2002, vol. 360, nos. 1–2, pp. 31–37.

    ADS  Google Scholar 

  7. Boyd, I.D., Modelling backward chemical rate processes in the direct simulation Monte Carlo method, Phys. Fluids, 2007, vol. 19, no. 12.

  8. Shevyrin, A. and Bondar, Y., On the calculation of the electron temperature flowfield in the DSMC studies of ionized re-entry flows, Adv. Aerodyn., 2020, vol. 2, no. 1.

  9. Fang, M., Li, Z.-H., Li, Z.-H., Liang, J., and Zhang, Y.-H., DSMC modelling of rarefied ionization reactions and applications to hypervelocity spacecraft reentry flows, Adv. Aerodyn., 2020, vol. 2, no. 1, pp. 1–25.

    Google Scholar 

  10. Bruno, D., Capitelli, M., Longo, S., and Minelli, P., Direct Simulation Monte Carlo Modelling of Non Equilibrium Reacting Flows, Berlin, Heidelberg: Springer-Verlag, 2004, vol. 3044, pp. 383–391.

    Google Scholar 

  11. Kusov, A.L., Modelling of ionization by using direct statistical simulation Monte Carlo method, Fiz.-Khim. Kinet. Gaz. Din., 2016, vol. 17, issue 2. http://chemphys.edu.ru/issues/2016-17-2/articles/663/.

  12. Kusov, A.L., On the possibility of the oxygen dissociation modelling in the shock wave by using classical models of the direct statistical simulation Monte Carlo method, Fiz.-Khim. Kinet. Gaz. Din., 2016, vol. 17, issue 1. http://chemphys.edu.ru/issues/2016-17-1/articles/612/.

  13. Atomic Spectra Database | NIST. https://www.nist.gov/pml/atomic-spectradatabase. Accessed Nov. 25, 2020.

  14. Kapper, M.G. and Cambier, J.-L., Ionizing shocks in argon. Part I: collisional-radiative model and steady-state structure, J. Appl. Phys., 2011, vol. 109, no. 11, p. 113308.

  15. Borgnakke, C. and Larsen, P.S., Statistical collision model for Monte Carlo simulation of polyatomic gas mixture, J. Comput. Phys., 1975, vol. 18, no. 4, pp. 405–420.

    ADS  Google Scholar 

  16. Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shock Waves and High Temperature Hydrodynamic Phenomena), Moscow: Fizmatlit, 2008.

  17. Velikovich, A.L. and Liberman, M.A., Fizika udarnykh voln v gazakh i plazme (Physics of Shock Waves in Gases and Plasma), Moscow: Nauka, 1987.

  18. Park, C., Nonequilibrium Hypersonic Aerothermodynamics, New York: Wiley, 1989.

    Google Scholar 

  19. Zatsarinny, O., Wang, Y., and Bartschat, K., Electron-impact excitation of argon at intermediate energies, Phys. Rev. A – At. Mol. Opt. Phys., 2014, vol. 89, no. 2, pp. 1–8.

    Google Scholar 

  20. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Non-Equilibrium Low Temperature Plasma), Moscow: Nauka, 1982.

  21. Bacri, J. and Gomes, A.M., Influence of atom-atom collisions on thermal equilibrium in argon arc discharges at atmospheric pressure, J. Phys. D. Appl. Phys., 1978, vol. 11, no. 16, pp. 2185–2197.

    ADS  Google Scholar 

  22. Kapper, M.G. and Cambier, J.L., Ionizing shocks in argon. Part I: collisional-radiative model and steady-state structure, J. Appl. Phys., 2011, vol. 109, no. 11.

  23. Shih-I Pai, Radiation Gas Dynamics, Springer, 1966.

    MATH  Google Scholar 

  24. Pilyugin, N.N. and Tirskii, G.A., Dinamika ionizovannogo izluchayushchego gaza (Dynamics of Ionized Radiating Gas), Moscow: MSU, 1989.

  25. Dirac, P., Principles of Quantum Mechanics, Oxford Univ. Press, 1930.

    MATH  Google Scholar 

  26. Griem, H.R., Plasma Spectroscopy, McGraw-Hill, 1964.

    Google Scholar 

  27. Sobel’man, I.I., Vvedenie v teoriyu atomnykh spektrov (Introduction to Atomic Spectra Theory), Moscow: Nauka, 1979.

  28. Arnold, J.O., Whiting, E.E., and Lyle, G.C., Line by line calculation of spectra from diatomic molecules and atoms assuming a Voigt line profile, J. Quant. Spectrosc. Radiat. Transf., 1969, vol. 9, no. 6, pp. 775–798.

    ADS  Google Scholar 

  29. Kamenshchikov, V.A., Plastinin, Yu.A., Nikolaev, V.M., and Novitskii, L.A., Radiatsionnye svoistva gazov pri vysokikh temperaturakh (Radiation Properties of High Temperature Gases), Moscow: Mashinostroenie, 1971.

  30. Vainshtein, L.A., Sobel’man, I.I., and Yukov, E.A., Vozbuzhdenie atomov i ushirenie spektral’nykh linii (Atomic Excitation and Spectral Line Broadening), Moscow: Nauka, 1979.

  31. Penner, S.S., Quantitative Molecular Spectroscopy and Gas Emissivities, Addison-Wesley Publ. Co., 1959.

    Google Scholar 

  32. TOPbase – Data Base on Photoionization Cross Sections.

  33. Glass, I.I. and Liu, W.S., Effects of hydrogen impurities on shock structure and stability in ionizing monatomic gases, J. Fluid Mech., 1978, vol. 84, no. 1, pp. 55–77.

    ADS  Google Scholar 

Download references

Funding

The work was carried out in accordance with the research plan of the Institute of Mechanics of Moscow State University and supported by the Russian Foundation for Basic Research (project no. 20-08-00343).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Kusov or V. Yu. Levashov.

Ethics declarations

The author declare that they have no conflicts of interest.

Additional information

Translated by L. Trubitsyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusov, A.L., Levashov, V.Y., Gerasimov, G.Y. et al. Direct Statistical Monte Carlo Simulation of Argon Radiation Behind the Front of a Strong Shock Wave. Fluid Dyn 58, 759–772 (2023). https://doi.org/10.1134/S0015462823600918

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823600918

Keywords:

Navigation