Skip to main content
Log in

Effect of the Skin Made of Micro Floating Raft Arrays on Weakly Nonlinear Stability in Boundary Layer Flow

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The skin made of micro floating raft arrays is a novel method in drag reduction engineering, the study of nonlinear boundary layer stability of flow over the skin is necessary. The weakly nonlinear stability theory is applied to flow over the skin. The weakly nonlinear stability problem of flow over the skin is solved for the first time. The weakly nonlinear flow stability characteristics of skin are analyzed. The results show that increase in the stiffness and damping ratios intensifies the distorted velocity of the Tollmien–Schlichting waves (TSW) but decrease the distorted velocity of travelling-wave flutter (TWF). Reducing the interval and the middle mass of the micro floating raft element can lead to a similar influence on the distorted velocity. The nonlinearity does not change the objective law of the effect of skin’s parameters on stability in the boundary layer. The skin can effectively improve the weakly nonlinear stability of the Tollmien–Schlichting waves: the skin with appropriate parameters lightens the velocity distortedness and reduces the perturbation nonlinear growth rate. The better control ability of skin on nonlinear flow stability also proves the potential in drag reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Li, L.C., Liu, B., Hao, H.L., et al., Investigation of the drag reduction performance of bionic flexible coating, Phys. Fluids, 2020, vol. 32, p. 084103.

  2. Zhou, H.G., Zhu, Y.S., Tian, G.Z., et al., Experimental investigations of the turbulent boundary layer for biomimetic surface with spine-covered protrusion inspired by pufferfish skin, Arab. J. Sci. Eng., 2021,vol. 46, pp. 2865–2875.

    Article  Google Scholar 

  3. Zhao, M.H., Yi, S.H., Mi, Q., Hu, Y.F., and Ding, H.L., Skin friction reduction of hypersonic body by supersonic layer, Fluid. Dyn., 2022, vol. 57, no. 5, pp. 686–696.

    Article  ADS  Google Scholar 

  4. Kramer, M.O., Boundary layer stabilization by distributed damping, Nav. Eng. J., 1962, vol. 74 p, pp. 341–348.

  5. Benjamin, T.B., The threefold classification of unstable disturbances in flexible surfaces bounding inviscid flows, J. Fluid. Mech., 1963, vol. 16, pp. 436–450.

    Article  ADS  Google Scholar 

  6. Landahl, M.T., On the stability of a laminar incompressible boundary layer over a flexible surface, J. Fluid. Mech., 1962, vol. 13, pp. 609–632.

    Article  ADS  Google Scholar 

  7. Carpenter, P.W. and Garrad, A.D., The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 1. Tollmien–Schlichting instabilities, J. Fluid. Mech., 1985, vol. 155, pp. 465–510.

    Article  ADS  Google Scholar 

  8. Carpenter, P.W. and Garrad, A.D., The hydrodynamic stability of flow over Kramer-type compliant surfaces. Part 2. Flow-induced surface instabilities, J. Fluid. Mech., 1986, vol. 170, pp. 199–232.

    Article  ADS  Google Scholar 

  9. Yeo, K.S., Khoo, B.C., and Zhao, H.Z., The absolute instability of boundary-layer flow over viscoelastic walls, Theor. Comp. Fluid. Dyn., 1996, vol. 8, pp. 237–252.

    Article  Google Scholar 

  10. Yeo, K.S., The stability of boundary-layer flow over single-and multi-layer viscoelastic walls, J. Fluid. Mech., 1988, vol. 196, pp. 359–408.

    Article  ADS  MathSciNet  Google Scholar 

  11. Yeo, K.S., Khoo, B.C., and Zhao, H.Z., The convective and absolute instability of fluid flow over viscoelastic compliant layers, J. Sound. Vib., 1999, vol. 223, pp. 379–398.

    Article  ADS  Google Scholar 

  12. Carpenter, P.W. and Morris, P.J., The effect of anisotropic wall compliance on boundary-layer stability and transition, J. Fluid. Mech., 1990, vol. 218, pp. 171–223.

    Article  ADS  Google Scholar 

  13. Grosskreutz, R., An attempt to control boundary-layer turbulence with nonisotropic compliant walls, Univ. Sci. J. (Dar es Salaam)., 1975, vol. 1, pp. 67–73.

    Google Scholar 

  14. Zhao, D., Cui, J., Dong, L.Q., et al., Drag reduction characteristics of the skin made of micro floating raft arrays based on immersed boundary method, Mech. Based. Des. Struc., 2023, vol. 51, no. 9.

  15. Tang, S., Liu, S.G., Zhao, D., et al., A novel skin made of micro floating raft arrays to control the boundary-layer flow stability, J. Braz. Soc. Mech. Sci., 2022, vol. 44, no. 9, p. 410.

    Article  Google Scholar 

  16. Cui, J., Zhao, D., Liu, S.G., et al., Stability of boundary-layer flow over a skin made of porous compliant wall and micro floating raft arrays, Ships Offshore Struct., 2022, vol. 18, no. 1, pp. 130–141.

    Article  Google Scholar 

  17. Ustinov, M.V., Laminar-turbulent transition in boundary layers (review). Part 1: main types of laminar-turbulent transition in a swept-wing boundary layer, TsAGI. Sci. J., 2013, vol. 44, no. 1, pp. 1–63.

    Google Scholar 

  18. Ustinov, M.V., Laminar-turbulent transition in boundary layers (review). Part 2: transition prediction and methods of boundary-layer laminarization, TsAGI. Sci. J., 2014, vol. 45, no. 8, pp. 851–887.

    Google Scholar 

  19. Zharov, V.A., Lipatov, I.I., and Selim, R.S., A waveguide model of the developed turbulent boundary layer, Comp. Math. Math. Phys., 2023, vol. 63, no. 5, pp. 868–880.

    Article  MathSciNet  Google Scholar 

  20. Zharov, V.A. and Selim, R.S., Heat transfer in the boundary layer in anincompressible fluid in terms of waveguideturbulence model, J. Phys.: Conf. Ser., 2019, vol. 1309, p. 012017.

  21. Musker, A.J., Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer, AIAA. J., 1979, vol. 17, no. 6, pp. 655–657.

    Article  ADS  Google Scholar 

  22. Zhao, H.Z., A Theoretical mode for the instability of turbulent boundary layer over compliant surface, Acta. Mech. Sin., 2001, vol. 17, no. 2, pp. 133–141.

    Article  ADS  Google Scholar 

  23. Zhao, H.Z., Influence of compliant wall on velocity profiledeformation in a turbulent boundary layer, J. Hydrodyn., 2002, vol. 17, no. 4, pp. 391–399.

    Google Scholar 

  24. Landau, L.D., On the problem of turbulence, C. R. Acad. Sci. URSS, 1944, vol. 44, p. 311.

    MathSciNet  Google Scholar 

  25. Stuart, J.T., On the non-linear mechanics of hydrodynamic stability, J. Fluid. Mech., 1958, vol. 4, pp. 1–21.

    Article  ADS  MathSciNet  Google Scholar 

  26. Stuart, J.T., On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. Part 1. The basic behavior in plane Poiseuille flow, J. Fluid. Mech., 1960, vol. 9, pp. 353–370.

    Article  ADS  MathSciNet  Google Scholar 

  27. Stuart, J.T., Nonlinear stability theory, Annu. Rev. Fluid. Mech., 1971, vol. 3, pp. 347–370.

    Article  ADS  Google Scholar 

  28. Brandt, L., Henningson, D.S., and Pinziani, D., Weakly nonlinear analysis of boundary layer receptivity to free stream disturbances, Phys. Fluids, 2002, vol. 14, pp. 1426–1441.

    Article  ADS  MathSciNet  Google Scholar 

  29. Sen, P. and Vashist, T., On the nonlinear stability of boundary-layer flow over a flat plate, Proc. R. Soc. London A: Math. Phys. Sci., 1989, vol. 424, no. 1866, pp. 81–92.

  30. Xie, M.L., Chan, T.L., Zhang, Y.D., et al., Numerical analysis of nonlinear stability of two-phase flow in the Blasius boundary layer, Int. J. Nonlin. Sci. Num., 2008, vol. 9, no. 4, pp. 423–434.

    Article  Google Scholar 

  31. Xie, M.L., Lin, J.Z., and Zhou, H.C., The effect of non-linear interaction between gas and particle velocities on the hydrodynamic stability in the Blasius boundary layer, Int. J. Non-lin. Mech., 2009, vol. 44, pp. 106–114.

    Article  Google Scholar 

  32. Carpenter, P.W., Davies, C., and Lucey, A.D., Hydrodynamics and compliantwalls: does the dolphin have a secret?, Curr. Sci. India, 2000, vol. 79, no. 6, pp. 758–765.

    Google Scholar 

  33. Rotenberry, J.M. and Saffman, P.G., Effect of compliant boundaries on weakly nonlinear shear waves in channel flow, Siam. J. Appl. Math., 1990, vol. 50, no. 2, pp. 361–394.

    Article  ADS  MathSciNet  Google Scholar 

  34. Thomas, M.D., The nonlinear stability of flows over compliant walls, J. Fluid. Mech., 1992, vol. 239, pp. 657–670.

    Article  ADS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant nos. 51775123 and 52075111) and the Fundamental Research Funds for the Central Universities (Grant no. 3072022JC0701).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Tang, S. G. Liu, D. Zhao, L. Q. Dong, L. Chen or J. Cui.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S., Liu, S.G., Zhao, D. et al. Effect of the Skin Made of Micro Floating Raft Arrays on Weakly Nonlinear Stability in Boundary Layer Flow. Fluid Dyn 58, 1183–1198 (2023). https://doi.org/10.1134/S0015462823600797

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823600797

Keywords:

Navigation