Skip to main content
Log in

Numerical Modeling of Supersonic Flow with a Region of Heat Release by a Longitudinal-Transverse Discharge

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Steady supersonic air flow in a diverging aerodynamic channel of rectangular cross-section is numerically simulated. The channel represents a laboratory model of an air-breathing straight-flow engine. The aerodynamic model is validated using the experimental data for the case in which the zone of volumetric heat release is absent. After the model has been validated a supersonic flow with a built-in zone of volumetric heat release was numerically simulated. Three-dimensional distributions of the velocity, temperature, and pressure in a steady supersonic air flow are obtained. It is shown that in the case, in which the volumetric density of the heat power of the source is equivalent to the mean total power of the discharge W = 10 kW, the discharge heats the gas up to the temperature T = 1700 to 4200 K, which leads to flow acceleration without its thermal choking. When the thermal power density of the source is equivalent to the mean common discharge power W = 20 kW, the gas is heated more strongly, up to 6700 K, but then local thermal choking of the flow occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Leonov, S.B., Electrically driven supersonic combustion, Energies, 2018, no. 11, p. 1733. https://doi.org/10.3390/en11071733

  2. Chernyi, G.G., Some recent results in aerodynamic applications of flows with localized energy addition, 9 International Space Planes and Hypersonic Systems and Technologies Conference and 3 Weakly Ionized Gases Workshop, November 1–5, 1999, Norfolk, VA, USA, AIAA-99-4819. https://doi.org/10.2514/6.1999-4819

  3. Lin Bing-xuan, Wu Yun, Zhang Zhi-bo, and Chen Zheng, Multi-channel nanosecond discharge plasma ignition of premixed propane/air under normal and sub-atmospheric pressures, Combustion Flame, 2017, vol. 182, pp. 102–113. https://doi.org/10.1016/j.combustflame.2017.04.022

    Article  Google Scholar 

  4. Enloe, C.L., McLaughlin, T.E., VanDyken, R.D., Kachner, K.D., Jumper, E.J., and Corke, T.C., Mechanisms and responses of a single dielectric barrier plasma actuator: plasma morphology, AIAA J., 2004, vol. 42, no. 3, pp. 589–594. https://doi.org/10.2514/1.2305

    Article  ADS  Google Scholar 

  5. Znamenskaya, I.A., Lutskii, A.E., and Mursenkova, I.V., The surface energy deposited into gas during initiation of a pulsed plasma sheet, Techn. Phys. Letters, 2024, vol. 30, no. 1, pp. 1036–1038. http://elibrary.lt/resursai/Uzsienio%20leidiniai/ioffe/pztf/2004/24/pztf_t30v24_07.pdf

  6. Znamenskaya, I.A., Latfullin, D.F., Lutskii, A.E., Mursenkova, I.V., and Sysoev, N.N., Development of gas-dynamic perturbations propagating from a distributed sliding surface discharge, Techn. Phys., 2007, vol. 52, no. 5, pp. 546–554. http://elibrary.lt/resursai/Uzsienio%20leidiniai/ioffe/ztf/2007/05/ztf7705_02.pdf

  7. Shibkov, V.M., Shibkova, L.V., and Logunov, A.A., Effect of the air flow velocity on the characteristics of a pulsating discharge produced by a DC power source, Plasma Phys. Rep. 2018, vol. 44, no. 8, pp. 754–765. https://www.elibrary.ru/item.asp?id=35642593

    ADS  Google Scholar 

  8. Shibkov, V.M., Shibkova, L.V., and Logunov, A.A., Parameters of the plasma of a DC pulsating discharge in a supersonic air flow, Plasma Phys. Rep., 2017, vol. 43, no. 3, pp. 373–380. https://doi.org/10.7868/S0367292117030118

    Article  ADS  Google Scholar 

  9. Shibkov, V.M., Shibkova, L.V., and Logunov, A.A., The degree of air ionization in a non-stationary pulsating discharge in subsonic and supersonic flows, Moscow Univ. Phys. Bull., 2018, vol. 73, no. 5, pp. 501–506. https://www.elibrary.ru/item.asp?id=36992595

    ADS  Google Scholar 

  10. Shibkov, V.M., Shibkova, L.V., and Logunov, A.A., The electron temperature in the plasma of a DC discharge created in supersonic airflow, Moscow Univ. Phys. Bull., 2017, vol. 72, no. 3, pp. 294–300. http://vmu.phys.msu.ru/file/2017/3/17-3-075.pdf

    ADS  Google Scholar 

  11. Kopyl, P.V., Surkont, O.S., Shibkov, V.M., and Shibkova, L.V., Stabilization of liquid hydrocarbon fuel combustion by using a programmable microwave discharge in a subsonic airflow, Plasma Phys. Rep., 2012, vol. 38, no. 6, pp. 503–512. https://www.elibrary.ru/item.asp?id=17726891

    ADS  Google Scholar 

  12. Zarin, A.S., Kuzovnikov, A.A., and Shibkov, V.M., Svobodno lokalizovannyi SVCh-razryad v vozdukhe (Freely Localized High-Frequency Discharge in the Air), Moscow: Neft’ i Gaz, 1996.

  13. Shibkov, V.M., Aleksandrov, A.F., Ershov, A.P., Timofeev, I.B., Chernikov, V.A., and Shibkova, L.V., Freely localized microwave discharge in a supersonic gas flow, Plasma Phys. Rep., 2005, vol. 31, no. 9, pp. 795–801. https://www.elibrary.ru/item.asp?id=9175972

    ADS  Google Scholar 

  14. Shibkov, V.M., Aleksandrov, A.F., Chernikov, V.A., Ershov, A.P., and Shibkova, L.V., Microwave and direct-current discharges in high-speed flow: fundamentals and application to ignition, J. Propulsion Power, 2009, vol. 25, no. 1, p. 123. https://doi.org/10.2514/1.24803

    Article  Google Scholar 

  15. Shibkov, V.M., Dvinin, S.A., Ershov, A.P., Konstantinovskii, R.S., Surkont, O.S., Chernikov, V.A., and Shibkova, L.V., Surface microwave discharge in air, Plasma Phys. Rep., 2007, vol. 33, no. 1, pp. 72–79. https://elibrary.ru/item.asp?id=9444599

    ADS  Google Scholar 

  16. Shibkov, V.M., Shibkova, L.V., Gromov, V.G., Karachev, A.A., and Konstantinovskii, R.S., Influence of surface microwave discharge on ignition of high-speed propane-air flows, High Temperatures, 2011, vol. 49, no. 2, pp. 155–167. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvt&paperid=277&option_lang=rus

  17. Shibkov, V.M., Ershov, A.P., Chernikov, V.A., and Shibkova, L.V., Microwave discharge on the surface of a dielectric antenna, Techn. Phys., 2005, vol. 50, no. 4, pp. 455–461. https://journals.ioffe.ru/articles/8529

  18. Shibkov, V.M., Dvinin, S.A., Ershov, A.P, and Shibkova, L.V., Mechanisms of microwave surface discharge propagation, Techn. Phys., 2005, vol. 50, no. 4, pp. 462–467. https://journals.ioffe.ru/articles/8530

  19. Shibkov, V.M., Shibkova, L.V., and Karachev, A.A., A surface microwave discharge at high pressures of air, High Temperatures, 2009, vol. 47, no. 5, pp. 620–627. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvt&paperid=902&option_lang=rus

  20. Logunov, A.A., Kornev, K.N., Shibkova, L.V., and Shibkov, V.M., Influence of the interelectrode gap on the main characteristics of a pulsating transverse-longitudinal discharge in high-velocity multicomponent gas flows, High Temperatures, 2021, vol. 59, no. 1, pp. 19–26. https://link.springer.com/article/10.1134/S0018151X21010119

  21. Shibkova, L.V., Shibkov, V.M., Logunov, A.A., Dolbnya, D.S., and Kornev, K.N., Parameters of pulsed discharge plasma in high-speed gas flows, High Temperatures, 2020, vol. 58, no. 6, pp. 754–760. https://doi.org/10.31857/S0040364420060198

    Article  Google Scholar 

  22. Dvinin, S.A., Ershov, A.P., Timofeev, I.B., Chernikov, V.A., and Shibkov, V.M., Simulation of a DC discharge in a transverse supersonic gas flow, High Temperatures, 2004, vol. 42, no. 2, pp. 171–182. https://doi.org/10.1023/B:HITE.0000026147.82949.36

    Article  Google Scholar 

  23. Toktaliev, P.D., Semenev, P.A., Moralev, I.A., Kazanskii, P.N., Bityrin, V.A., and Bocharov, A.N., Numerical modeling of electric arc motion in external constant magnetic field, J. Phys.: Conf. Ser., 2020, 1683 032009. https://doi.org/10.1088/1742-6596/1683/3/032009

  24. Moralev, I., Kazanskii, P., Bityurin, V., Bocharov, A., Firsov, A., Dolgov, E., and Leonov, S., Gas dynamics of the pulsed electric arc in the transversal magnetic field, J. Phys.: D: Appl. Phys., 2020, vol. 53, no. 42, p. 425203. https://doi.org/10.1088/1361-6463/ab9d5a

  25. Rakhimov, R.G., Moralev, I.A., Firsov, A.A., Bityurin, V.A., and Bocharov, A.N., On the gasdynamics of the electric discharge in external magnetic field, J. Phys.: Conf. Ser. 2019, vol. 1147, p. 012128. https://doi.org/10.1088/1742-6596/1147/1/012128

  26. Boulos, M. I., Fauchais, P., and Pfender, E., Thermal Plasmas: Fundamentals and Applications, Plenum: Springer, 1994.

    Google Scholar 

  27. Abramovich, G.N., Prikladnaya gazovaya dinamika (Applied Gas Dynamics), Moscow: Nauka, 1976.

Download references

Funding

The study is carried out with the financial support of the Russian Science Foundation under grant no. 23-22-00233. K.N. Kornev is the grant holder of the Theoretical Physics and Mathematics Advancement Foundation “BASIS” and thanks the Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. N. Kornev, A. A. Logunov or V. M. Shibkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Tranlsated by M. Lebedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornev, K.N., Logunov, A.A. & Shibkov, V.M. Numerical Modeling of Supersonic Flow with a Region of Heat Release by a Longitudinal-Transverse Discharge. Fluid Dyn 58, 640–648 (2023). https://doi.org/10.1134/S0015462823600281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462823600281

Keywords:

Navigation