Skip to main content
Log in

Numerical Investigation of the Structure of Fracture Network Impact on the Fluid Flow through a Poroelastic Medium

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Two-dimensional single-phase flow of a weakly compressible fluid through a deformable fractured-porous medium is considered. A poroelastic model is used for coupled simulation of the fluid flow and the related changes in the stress state of the medium. Fracture network is simulated using the discrete fracture model. The fractures in the region under consideration have random location and orientations, and the fracture length distribution follows a power law. The dependence of the hydraulic properties of fractured porous media on its stress-strain state and the structure of the fracture network is studied. Numerical study was performed for various realizations of fracture network obtained using multiple random generation. It is found that the permeability of the fractured porous medium is determined mainly by the structure of the fracture system characterized by the percolation parameter. According to the simulations results, hydraulic properties are significantly affected by the stress-strain state only for connected fracture systems. An approximation is proposed to define the dependence of the equivalent permeability of a fractured-porous medium on the following parameters: the connectivity of the fracture system, the stress-strain state of the medium, and fracture properties such as stiffness and aperture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Smirnov, N.N., Nikitin, V.F., Kolenkina (Skryleva), E.I., and Gazizova, D. R., Evolution of a phase interface in the displacement of viscous fluids from a porous medium, Fluid Dyn., 2021, vol. 56, no. 1, pp. 79–92. https://doi.org/10.1134/S0015462821010122

    Article  ADS  MathSciNet  Google Scholar 

  2. Nikitin, V.F., Skryleva, E.I., and Weisman, Yu.G., Control of capillary driven fluid flows for safe operation of spacecraft fluid supply systems using artificial porous media, Acta Astronautica., 2022, vol. 194, pp. 544–548. https://doi.org/10.1016/j.actaastro.2021.12.009

    Article  ADS  Google Scholar 

  3. Dushin, V.R., Smirnov, N.N., Nikitin,V.F., Skryleva, E. I., and Weisman,Yu.G., Multiple capillary-driven imbibition of a porous medium under microgravity conditions: Experimental investigation and mathematical modeling, Acta Astronautica, 2022, vol. 193, pp. 572–578, https://doi.org/10.1016/j.actaastro.2021.06.054

    Article  ADS  Google Scholar 

  4. Kiselev, A.B., Kay-Zhui, L., Smirnov, N.N., and Pestov, D.A., Simulation of fluid flow through a hydraulic fracture of a heterogeneous fracture-tough reservoir in the planar 3D formulation, Fluid Dyn., 2021, vol. 56, no. 2, pp. 164–177. https://doi.org/10.1134/S0015462821020051

    Article  ADS  MathSciNet  Google Scholar 

  5. Smirnov, N., Li, K., Skryleva, E., Pestov, D., Shamina, A., Qi, C., and Kiselev, A., Mathematical modeling of hydraulic fracture formation and cleaning processes, Energies, 2022, vol. 15, no. 6. https://doi.org/10.3390/en15061967

  6. Van Golf-Racht, T.D., Fundamentals of Fractured Reservoir Engineering, Amsterdam: Elsevier, 1982.

    Google Scholar 

  7. Nelson, R.A., Geologic Analysis of Naturally Fractured Reservoirs, Gulf Professional Publishing, 2001.

    Google Scholar 

  8. Pichugin, O.N., Rodionov, S.P., Solyanoi, P.N., Gavris’, A.S., Kosyakov, V.P., and Kosheverov, G.G., Principles of optimization of the oilfield flooding systems for oilfields complicated with low-amplitude tectonic violations, in: SPE Russian Oil and Gas Technological Conference, Moscow, Russia, 2015. https://doi.org/10.2118/176697-MS

  9. Karimi-Fard, M., Durlofsky, L.J., and Aziz, K, An efficient discrete-fracture model applicable for general-purpose reservoir simulators, SPE J., 2004, vol. 9, no. 2, pp. 227–236. https://doi.org/10.2118/88812-PA

    Article  Google Scholar 

  10. Garipov, T.T., Karimi-Fard, M., and Tchelepi, H.A., Discrete fracture model for coupled flow and geomechanics, Comput. Geosci., 2016, vol. 20, no. 1, pp. 149–160. https://doi.org/10.1007/s10596-015-9554-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Bai, M., On equivalence of dual-porosity poroelastic parameters, J. Geophys. Res: Solid Earth, 1999, vol. 104, no. B5, pp. 10461–10466. https://doi.org/10.1029/1999JB900072

    Article  Google Scholar 

  12. Chen, H.-Y. and Teufel, L.W. Coupling fluid-flow and geomechanics in dual-porosity modeling of naturally fractured reservoirs—model description and comparison, in: SPE Int. Oil Conf. and Exh. in Mexico, 2000. https://doi.org/10.2118/59043-MS

  13. Rutqvist, J. and Stephansson, O., The role of hydromechanical coupling in fractured rock engineering, Hydrogeol. J. 2003, vol. 11, no. 1, pp. 7–40. https://doi.org/10.1007/s10040-002-0241-5

    Article  ADS  Google Scholar 

  14. Biot, M.A., General theory of three-dimensional consolidation, J. Appl. Phys., 1941, vol. 12, no. 2, pp. 155–164. https://doi.org/10.1063/1.1712886

    Article  ADS  MATH  Google Scholar 

  15. Coussy, O., Poromechanics, Wiley, 2004.

    MATH  Google Scholar 

  16. Gutierrez, M. and Youn, D.-J., Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses, J. Rock Mech. Geotech. Eng., 2015, vol. 7, no. 6, pp. 626–637. https://doi.org/10.1016/j.jrmge.2015.07.006

    Article  Google Scholar 

  17. Liu, R., Li, B., Jiang, Y., and Huang, N., Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks, Hydrogeol. J., 2016, vol. 24, no.7, pp. 1623–1649. https://doi.org/10.1007/s10040-016-1441-8

    Article  ADS  Google Scholar 

  18. Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., and Berkowitz B., Scaling of fracture systems in geological media, Rev. Geophys., 2001, vol. 39, no. 3, pp. 347–383. https://doi.org/10.1029/1999RG000074

    Article  ADS  Google Scholar 

  19. Bogdanov, I.I., Mourzenko, V.V., Thovert, J.-F., and Adler, P.M., Effective permeability of fractured porous media in steady state flow, Water Resour. Res., 2003, vol. 39, no. 1. https://doi.org/10.1029/2001WR000756

  20. Hyman, J.D., Karra, S., Carey, J.W., Gable, C.W., Viswanathan, H., Rougier, E., and Lei, Z., Discontinuities in effective permeability due to fracture percolation, Mech. Mater., 2018, vol. 119, pp. 25–33. https://doi.org/10.1016/j.mechmat.2018.01.005

    Article  Google Scholar 

  21. Jafari, A. and Babadagli, T., A sensitivity analysis for effective parameters on 2D fracture-metwork permeability, SPE Res. Eval. Eng., 2009, vol. 12, no. 3, pp. 455–469. https://doi.org/10.2118/113618-PA

    Article  Google Scholar 

  22. Bour, O. and Davy, P., Connectivity of random fault networks following a power law fault length distribution, Water Resour. Res., 1997, vol. 33, no. 7, pp. 1567–1583. https://doi.org/10.1029/96WR00433

  23. de Dreuzy, J.-R., Davy, P., and Bour, O., Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity, Water Resour. Res., 2001, vol. 37, no. 8, pp. 2065–2078. https://doi.org/10.1029/2001WR900011

    Article  ADS  Google Scholar 

  24. de Dreuzy, J.-R., Davy, P., and Bour, O., Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 2. Permeability of networks based on lognormal distribution of apertures, Water Resour. Res., 2001, vol. 37, no. 8, pp. 2079–2095. https://doi.org/10.1029/2001WR900010

    Article  ADS  Google Scholar 

  25. Masihi, M. and King, P.R., Connectivity prediction in fractured reservoirs with variable fracture size: Analysis and validation, SPE J., 2008, vol. 13, no. 1, pp. 88–98. https://doi.org/10.2118/100229-PA

    Article  Google Scholar 

  26. Witherspoon, P.A., Wang, J.S.Y., Iwai, K., and Gale, J.E., Validity of cubic law for fluid flow in a deformable rock fracture, Water Resour. Res., 1980, vol. 16, no. 6, pp. 1016–1024. https://doi.org/10.1029/WR016i006p01016

    Article  ADS  Google Scholar 

  27. Gao, K. and Lei, Q., Influence of boundary constraints on stress heterogeneity modelling, Comput. Geotech., 2018, vol. 99, pp. 130–136. https://doi.org/10.1016/j.compgeo.2018.03.003

    Article  Google Scholar 

  28. Tang, T., Hededal,O., and Cardiff, P., On finite volume method implementation of poro-elasto-plasticity soil model, Int. J. Numer. Anal. Meth. in Geomech., 2015, vol. 39, no. 13, pp. 1410–1430. https://doi.org/10.1002/nag.2361

    Article  Google Scholar 

  29. Kim, J., Tchelepi, H.A., and Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Comp. Meth. Appl. Mech. Eng., 2015, vol. 200, no. 13, pp. 1591–1606. https://doi.org/10.1016/j.cma.2010.12.022

    Article  MathSciNet  MATH  Google Scholar 

  30. Geuzaine, C. and Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Int. J. Num. Meth. Eng., 2009, vol. 79, no. 11, pp. 1309–1331. https://doi.org/10.1002/nme.2579

    Article  MathSciNet  MATH  Google Scholar 

  31. Legostaev, D.Y. and Rodionov, S.P. Numerical study of a two-phase fluid flow in a fractured porous medium based on models of poroelasticity and discrete fractures. J. Appl. Mech. Tech. Phys., 2021, vol. 62, no. 3, pp. 458–466. https://doi.org/10.1134/S0021894421030123

  32. Berre, I., Doster, F., and Keilegavlen, E., Flow in fractured porous media: A review of conceptual models and discretization approaches, Transp. in Porous Media, 2019, vol. 130, no. 1, pp. 215–236. https://doi.org/10.1007/s11242-018-1171-6

    MathSciNet  Google Scholar 

  33. Basniev, K.S., Kochina, I.N., and Maksimov, B.M., Podzemnaya gidromekhanika (Underground Hydromechanics), Moscow: Nedra, 1993.

  34. Lei, Q., Wang, X., Min, K.-B., and Rutqvist, J., Interactive roles of geometrical distribution and geomechanical deformation of fracture networks in fluid flow through fractured geological media, J. Rock Mech. Geotech. Eng., 2020, vol. 12, no. 4, pp. 780–792. https://doi.org/10.1016/j.jrmge.2019.12.014

    Google Scholar 

  35. Hestir, K. and Long, J.C.S., Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories, J. Geophys. Res: Solid Earth., 1990, vol. 95, no. B13, pp. 21565–21581. https://doi.org/10.1029/JB095iB13p21565

    Google Scholar 

  36. Berkowitz,B. and Balberg, I., Percolation theory and its application to groundwater hydrology, Water Resour. Res.,1993, vol. 29, no. 4, pp. 775–794. https://doi.org/10.1029/92WR02707

    ADS  Google Scholar 

Download references

Funding

The work was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (project no. 121030500156-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. Yu. Legostaev or S. P. Rodionov.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Legostaev, D.Y., Rodionov, S.P. Numerical Investigation of the Structure of Fracture Network Impact on the Fluid Flow through a Poroelastic Medium. Fluid Dyn 58, 598–611 (2023). https://doi.org/10.1134/S001546282360027X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001546282360027X

Keywords:

Navigation