Skip to main content
Log in

Generation of a Vertical Fine Structure by Internal Waves on the Sea Shelf

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Free internal waves are considered in the Boussinesq approximation with account of horizontal turbulent viscosity and diffusion in a two-dimensional flow in the sea of constant depth. In the linear approximation the boundary-value problem for the amplitude of vertical velocity has complex coefficients and is solved numerically using the third-order implicit Adams method. The vertical component of the Stokes drift velocity and the vertical wave fluxes of mass and salt are found in the second order in the wave amplitude. These fluxes lead to generation of a vertical fine structure that has an irreversible nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Samodurov, A.S., Lyubitskii, A.A., and Panteleev, N.A., Contribution of breaking internal waves to structure formation, energy dissipation and vertical diffusion in the ocean, Morskoi Gidrofiz. Zh., 1994, no. 3, pp. 14–27.

  2. Pavlova, E.P., Relationship between internal waves and fine structure in the shelf zone of the Far Eastern seas, in: Collection of Articles Based on the Materials of the Conference of Young Scientists TOY DVO RAN (November 27–30, 2001), Vladivostok, Dal’nauka, 2003, pp. 37–44.

  3. Turner, J.S., Buoyancy Effects in Fluids, Cambridge: Cambridge University Press, 1973.

    Book  MATH  Google Scholar 

  4. Zhurbas, V.M. and Ozmidov, R.V., On the internal pattern of the fine stepped structure of the oceanic thermocline, Okeanologiya, 1983, vol. 23,no. 6, pp. 938–946.

    Google Scholar 

  5. Molcard, R. and Williams, A.J., Deep stepped structure in the Tyrrhenian sea, Mem. Soc. Roy. Sci. Liege, ser. 6, 1975, vol. 7, pp. 191–210.

    Google Scholar 

  6. Williams, A.J., Salt fingers in the Mediaterranean outflow, Science, 1974, vol. 185, no. 4155, pp. 941–943.

    Article  ADS  Google Scholar 

  7. Kozitskii, S.B., Amplitude equations for a system with thermohaline convection, Zh. Prikl. Mekh. Tekh. Fiz., 2000, vol. 41, no. 3, pp. 56–66.

    MathSciNet  Google Scholar 

  8. Zhurbas, V.M. and Lips, U.K., On the internal pattern of the fine stepped structure of the oceanic thermocline, Okeanologiya, 1987, no. 4. pp. 562–567.

  9. Falina, A.S. and Volkov, I.I., Influence of the process of double diffusion on the general hydrological structure of the deep waters of the Black Sea, Okeanologiya, 2005, vol. 45, no. 1, pp. 21–31.

    Google Scholar 

  10. Keller, K.H. and Van Atta, C.W., An experimental investigation of the vertical temperature structure of homogeneous stratified shear turbulence, J. Fluid Mech., 2000, vol. 425, pp. 1–29.

    Article  MATH  ADS  Google Scholar 

  11. Wunsch, C. and Ferrari, R., Vertical mixing, energy, and the general circulation of the ocean, Ann. Rev. Fluid. Mech., 2004, vol. 36, pp. 281–314

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Zatsepin, A.G., Golenko, N.N., Korzh, A.O., Kremenetskii, V.V., Paka, B.T., Poyarkov, S.G., and Stunzhas, P.A., Influence of current dynamics on the hydrophysical structure of waters and vertical exchange in the Black Sea active layer, Okeanologiya, 2007, vol. 47, no. 3, pp. 327–339.

    Google Scholar 

  13. Ivanov, A.V., Ostrovsky, L.A., Soustova, I.A., and Thimring, L.Sh., Interaction of internal waves and turbulent in the upper layer of the ocean, Dyn. Atmos. Ocean, 1984, vol. 3, no. 7, pp. 221–232.

    Google Scholar 

  14. Zatsepin, A.G., Gerasimov,V.V., and Ostrovskii, A.G., Turbulent mass transfer in a stratified fluid and the conditions for its fine-structure stratification, in: Russian Seas: Challenges of Native Science. Abstracts of the All-Russian Scientific Conference, Sevastopol, September 26–30, 2022, Sevastopol: MGI, 2022.

  15. Zimin, A.V., Pomanenkov, D.A., Kozlov, I.E., Shapron, B., Rodionov, A.A., Atadzhanova, O.A., Myasoedov, A.G., and Kollar, F., Short-period internal waves in the White Sea: operational sub-satellite experiment in the summer of 2012, Issled. Zemli iz Kosmosa, 2014, no. 3, pp. 1–14

  16. Bondur, V.G., Serebryannyi, A.N., Zamshin, V.V., Narasov, L.L., and Khimchenko, E.E., Intense internal waves of anomalous heights on the Black Sea shelf, Izv. RAN, Fiz. Atm. Okeana, 2019, vol. 55, no. 1, pp. 114–127.

    Google Scholar 

  17. Ivanov, V.A., Shul’ga, T.Ya., Bagaev, A.V., Medvedeva, A.V., Plastun, T.V., Vrzhevskaya, L.V., and Svi-shcheva, I.A., Internal waves in the region of the Heracleian Peninsula: modeling and observation, Morskoi Gidrofiz. Zh., 2019, vol. 35, no. 4, pp. 322–340.https://doi.org/10.22449/0233-7584-2019-4-322-340

    Article  Google Scholar 

  18. Bulatov, V.V. and Vladimirov, Yu.V., Volny v stratifitsirovannykh sredakh (Waves in Stratified Media), Moscow: Nauka, 2015.

  19. Borizenko, Yu.D., Voronovich, A.G., Leonov, A.I., and Miropol’skii, Yu.Z., On the theory of non-stationary weakly nonlinear internal waves in a stratified fluid, Izv. AN SSSR, Fiz. Atm. Okeana, 1976, vol. 12, no. 3, pp. 293–301.

    Google Scholar 

  20. Voronovich, A.G., Leonov, A.I., and Miropol’skii, Yu.Z., On the theory of fine structure formation of hydrophysical fields in the ocean, Okeanologiya, 1976, vol. 11, no. 5, pp. 490–497.

    Google Scholar 

  21. Le Blond, P.H. and Mysak, L.A., Waves in the Ocean, Vol. 2, Amsterdam: Elsevier, 1978; Moscow: Mir, 1981.

  22. Le Blond, P.H., On damping of internal gravity waves in a continuously stratified ocean, J. Fluid Mech., 1966, vol. 25, no. 1, pp. 121–142. https://doi.org/10.1017/S0022112066000089

  23. Ostrovskii, L.A. and Soyustova, I.A., Upper mixed layer as a sink of internal wave energy, Okeanolog., 1979, vol. 19, no. 6, pp. 973–981.

    Google Scholar 

  24. Nosova, A.V. and Slepyshev, A.A., Vertical fluxes induced by weakly nonlinear internal waves on a shelf, Fluid Dyn., 2015, vol. 50, no. 1, pp. 12–21.https://doi.org/10.1134/S0015462815010020

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Nosova, A.V. and Slepyshev, A.A., Generation of a vertical fine structure with account for turbulent viscosity and diffusion, Morskoi Gidrofiz. Zhurn., 2020, vol. 36, no. 1, pp. 5–19. https://doi.org/10.22449/0233-7584-2020-1-5-19

    Article  Google Scholar 

  26. Pogrebnoi, A.E., Estimate of the horizontal turbulent transfer coefficients in the Black Sea according to drifter experiment data, Morskoi Gidrofiz. Zhurn., 2011, no. 5, pp. 40–49.

  27. Samoduov, A.S., Complementarity of different approaches for estimating the intensity of vertical turbulent transfer in natural stratified basins, Morskoi Gidrofiz. Zhurn., 2016, vol. 32, no. 6, pp. 37–48. https://doi.org/10.22449/0233-7584-2016-6-37-48

    Article  Google Scholar 

  28. Podymiv, O.I., Zatsepin, A.G., and Ostrovskii, A.G., Vertical turbulent exchange in the Black Sea pycnocline and its relation to water dynamics, Okeanologiya, 2017, vol. 57, no. 4, pp. 546–559. https://doi.org/10.7868/S0030157417040049

    Article  Google Scholar 

  29. Miropol'skii, Yu.Z., Dinamika vnutrennikh gravitatsionnykh voln v okeane (Dynamics of Internal Gravity Waves in the Ocean), Leningrad: Gidrometeoizdat, 1981.

  30. Gill, A.E., Atmosphere-Ocean Dynamics, vol. 1, Academic, 1982; Moscow: Mir, 1986.

  31. Longuet-Higgins, M.S., On the transport of mass by time varying ocean current, Deep-Sea Res., 1969, vol. 16, no. 5, pp. 431–447. https://doi.org/10.1016/0011-7471(69)90031-X

    Article  ADS  Google Scholar 

  32. Slepyshev, A.A. and Vorotnikov, D.I., Vertical fluxes of heat and salt caused by internal waves on the sea shelf, Izv. RAN, Fiz. Atm. Okeana, 2017, vol. 53, no. 4, pp. 532–541. https://doi.org/10.7868/S000335151704011

    Article  Google Scholar 

  33. Panteleev, N.A., Report of the Studies During the 44th Voyage (3rd Stage) of the Mikhail Lomonosov Research Ship, August 7–September 15, 1985, vol. 1, Sevastopol: MGI AN USSR, 1985.

  34. Ozmidov, R.V., On the dependence of the coefficient of horizontal turbulent transfer in the ocean on the scale of the phenomenon, Izv. AN SSSR, Fiz. Atm. Okeana, 1968, vol. 1, no. 11, pp. 1224–1225.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author wishes to thank E.I. Grinevich for solving numerically the boundary-value problems.

Funding

The work was carried out within the framework of the State Program on the theme no. 0555-2021-0004 “Basic investigations of the oceanologic processes determining the state and evolution of the marine medium under the influence of natural and man-made factors on the basis of methods of monitoring and simulation” (cipher “Oceanologic processes”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Slepyshev.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slepyshev, A.A. Generation of a Vertical Fine Structure by Internal Waves on the Sea Shelf. Fluid Dyn 58, 413–426 (2023). https://doi.org/10.1134/S0015462822602200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822602200

Keywords:

Navigation