Skip to main content
Log in

Motion of a Piston Separating Magnetic and Non-Magnetic Fluids in a Magnetic Field

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The pumping of non-magnetic fluid by a dosing pump that is based on a magnetic fluid with an immersed body made of a magnetizable material is studied theoretically and experimentally. The process of fluid pumping in an applied vertical uniform magnetic field is investigated. The time dependences of the rise of the piston between the magnetic and non-magnetic fluids are calculated and measured in constant and stepwise magnetic fields. A good agreement between theory and experiment is obtained. The dependence of the rise time of the piston on the magnitude of the constant magnetic field is calculated. The motion of piston is theoretically investigated after the magnetic field is switched off.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. Neuringer, J.L. and Rosensweig, R.E., Ferrohydrodynamics, Phys. Fluids, 1964, vol. 7, no. 12, pp. 1927–1937. https://doi.org/10.1063/1.1711103

    Article  ADS  MathSciNet  Google Scholar 

  2. Rosensweig, R.E., Ferrohydrodynamics, Cambridge University Press, 1985.

    Google Scholar 

  3. Gogosov, V.V., Naletova, V.A., and Shaposhnikova, G.A., Hydrodynamics of magnetizable fluids, Itogi Nauki i Tekhniki. Mekhanika Zhidkosti i Gaza, 1981, vol. 16, pp. 76–208.

    Google Scholar 

  4. Naletova, V.A., Lektsii po ferrogidrodinamike (Lectures on Ferrohydrodynamics), Izd-vo TsPI pri Mekhaniko-Matematicheskom Fakul’tete MGU, 2005.

  5. Kiryushin, V.V. and Paraskevopulo, O.R., Surface shape of a magnetic liquid drop near the edge of a magnetic wedge, Fluid Dyn., 1992, vol. 27, pp. 538–543. https://doi.org/10.1007/BF01051331

    Article  ADS  MATH  Google Scholar 

  6. Pelevina, D.A., Shape of the free surface of a magnetic fluid containing a cylindrical concentrator of the magnetic field, Fluid Dyn., 2016, vol. 51, no. 6, pp. 722–732. https://doi.org/10.1134/S0015462816060028

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Tyatyushkin, A.N., Flow of a thin magnetic liquid layer in a magnetic field, Fluid Dyn., 2019, vol. 54, no. 4, pp. 466–471. https://doi.org/10.1134/S0015462819040116

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Tyatyushkin, A.N., Deformation of an inviscid magnetizable liquid drop in a non-stationary magnetic field, Fluid Dyn., 2021, vol. 56, no. 5, pp. 138–150. https://doi.org/10.1134/S0015462821050141

    Article  MathSciNet  MATH  Google Scholar 

  9. Park, G.S. and Park, S.H., Design of magnetic fluid linear pump, IEEE Trans. Magn., 1999, vol. 35, no. 5, pp. 4058–4060. https://doi.org/10.1109/INTMAG.1999.837694

    Article  ADS  Google Scholar 

  10. Park, G.S. and Park, S.H., New structure of the magnetic fluid linear pump, IEEE Trans. Magn., 2000, vol. 36, no. 5, pp. 3709–3711. https://doi.org/10.1109/20.908948

    Article  ADS  Google Scholar 

  11. Park, G.S. and Kang, S., New design of the magnetic fluid linear pump to reduce the discontinuities of the pumping forces, IEEE Trans. Magn., 2004, vol. 40, no. 2, pp. 916–919. https://doi.org/10.1109/TMAG.2004.824718

    Article  ADS  Google Scholar 

  12. Zhao, M., Zou, J.B., Xu, Y.X., Zhao, B., and Li, Y., Investigation of spin travelling wave pump on magnetic fluid, Mater. Res. Innov., 2015, vol. 19, no. 5, pp. 429–432. https://doi.org/10.1179/1432891714Z.0000000001125

    Article  Google Scholar 

  13. Zhao, M., Zou, J.B., Hu, J., and Xu, Y.X., Analysis of driving capacity on traveling wave pump of magnetic fluid, Abstract Book of 12th International Conference on Magnetic Fluids (ICMF12), Sendai, 2010, pp. 138–139.

  14. Ido, Y., Tanaka, K., and Sugiura, Y., Fluid transportation mechanisms by a coupled system of elastic membranes and magnetic fluid, J. Magn. Magn. Mater., 2002, vol. 252, pp. 344–346. https://doi.org/10.1016/S0304-8853(02)00631-5

    Article  ADS  Google Scholar 

  15. Kalmykov, S.A., Naletova, V.A., Pelevina, D.A., and Turkov, V.A., Two-layer flow of magnetic fluids, Fluid Dyn., 2013, vol. 48, no. 5, pp. 567–576. https://doi.org/10.1134/S0015462813050013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Greivell, N.E. and Hannaford, B., The design of a ferrofluid magnetic pipette, IEEE Trans. Biomed. Eng., 1997, vol. 44, no. 3, pp. 129–135. https://doi.org/10.1109/10.554759

    Article  Google Scholar 

  17. Yamahata, C., Chastellain, M., Parashar, V.K., Petri, A., Hofmann, H., and Gijs, M.A.M., Plastic micropump with ferrofluidic actuation, J. Microelectromech. Syst., 2005, vol. 14, no. 1, pp. 96–102. https://doi.org/10.1109/JMEMS.2004.839007

    Article  Google Scholar 

  18. Das, K., Sarkar, M., Mukhopadhyay, A., and Ganguly, R., Transient response of a ferrofluid plug-driven micropump, Magnetohydrodynamics, 2013, vol. 49, nos. 3–4, pp. 499–504. https://doi.org/10.22364/mhd.49.3-4.46

    Article  Google Scholar 

  19. Ando, B., Ascia, A., Baglio, S., and Pitrone, N., Ferrofluidic pumps: a valuable implementation without moving parts, IEEE Trans. Instrum. Meas., 2009, vol. 58, no. 9, pp. 3232–3237. https://doi.org/10.1109/TIM.2009.2017167

    Article  ADS  Google Scholar 

  20. Ando, B., Ascia, A., Baglio, S., and Pitrone, N., Magnetic fluids and their use in transducers, IEEE Trans. Instrum. Meas., 2006, vol. 9, no. 6, pp. 44–47. https://doi.org/10.1109/MIM.2006.250650

    Article  Google Scholar 

  21. Hartshorne, H., Backhouse, C.J., and Lee, W.E., Ferrofluid-based microchip pump and valve, Sens. Actuators B: Chem., 2004, vol. 99, nos. 2–3, pp. 592–600. https://doi.org/10.1016/j.snb.2004.01.016

    Article  Google Scholar 

  22. Hatch, A., Kamholz, A.E., Holman, G., Yager, P., and Böhringer, K.F., A ferrofluidic magnetic micropump, J. Microelectromech. Syst., 2001, vol. 10, no. 2, pp. 215–221. https://doi.org/10.1109/84.925748

    Article  Google Scholar 

  23. Ashouri, M., Shafii, M.B., Moosavi, A., and Hezave, H.A., A novel revolving piston minipump, Sens. Actuators B: Chem., 2015, vol. 218, pp. 237–244. https://doi.org/10.1016/j.snb.2015.04.104

    Article  Google Scholar 

  24. Liu, B., Zhang, Z., Yang, J., Yang, J., and Li, D., A rotary ferrofluidic vane micropump with C shape baffle, Sens. Actuators B: Chem., 2018, vol. 263, pp. 452–458. https://doi.org/10.1016/j.snb.2018.02.113

    Article  Google Scholar 

  25. Landau, L.D. and Lifshitz, E.M., Elektrodinamika sploshnukh sred (Electrodynamics of Continuous Media), Moscow: Nauka, 1992.

Download references

Funding

The work was supported by Russian Science Foundation (Grant no. 20-71-10002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. V. Volkova.

Additional information

Translated by A.S. Vinogradova and E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, U.V., Merkulov, D.I., Kalmykov, S.A. et al. Motion of a Piston Separating Magnetic and Non-Magnetic Fluids in a Magnetic Field. Fluid Dyn 58, 101–112 (2023). https://doi.org/10.1134/S0015462822601784

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822601784

Keywords:

Navigation