Skip to main content
Log in

Investigation of the Behavior of Hydrate Slurry Flow in the Bend Based on the CFD-PBM Approach

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The hydrate is a severe threat to the flow assurance of oil and gas transportation pipelines. For this reason, the behavior of hydrate slurry flow in the bend is investigated based on the Computational Fluid Dynamics-Population Balance Model (CFD-PBM) considering the aggregation and breakage of hydrate. Meanwhile, the effects of the bend angle, the velocity, the hydrate volume fraction, and the initial hydrate particle size on the hydrate concentration and the particle size are discussed in detail. The results show that hydrate is prone to aggregate on the outside of the elbow in the L-pipe. As the bend angle decreases, the hydrate concentration increases slightly, while the high-concentration region, the large particle size region, and the particle size decrease in the elbow. The high velocity can reduce hydrate aggregation in the elbow. However, the high hydrate concentration and the large particle size are not conducive to safe transportation. When the particle size is greater than 84 μm, there exists a blockage risk in the elbow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, Boca Raton, FL: CRC Press, 2008.

    Google Scholar 

  2. Hammerschmidt, E.G., Formation of gas hydrates in natural gas transmission lines, Ind. Eng. Chem., 1934, vol. 26, no. 8, pp. 851–855. https://doi.org/10.1021/ie50296a010

    Article  Google Scholar 

  3. Max, M.D. and Johnson, A.H., Hydrate petroleum system approach to natural gas hydrate exploration, Pet. Geosci., 2014, vol. 20, no. 2, pp. 187–199. https://doi.org/10.1144/petgeo2012-049

    Article  Google Scholar 

  4. Sloan, E.D. and Koh, C.A., Clathrate Hydrates of Natural Gases, Boca Raton, FL: CRC Press, 2007.

    Book  Google Scholar 

  5. Webb, E.B., Rensing, P.J., Koh, C.A., Dendy, S.E., Sum, A.K., and Liberatore, M.W., High-pressure rheology of hydrate slurries formed from water-in-oil emulsions, Energy Fuels, 2012, vol. 26, no. 6, pp. 3504–3509. https://doi.org/10.1021/ie5008954

    Article  Google Scholar 

  6. Ding, L., Shi, B.H., Lv, X.F., Liu, Y., Wu, H.H., Wang, W., and Gong, J., Hydrate formation and plugging mechanisms in different gas-liquid flow patterns, Ind. Eng. Chem. Res., 2017, vol. 56, no.14, pp. 4173–4184. https://doi.org/10.1021/acs.iecr.6b02717

    Article  Google Scholar 

  7. Xu, H.L., Xie, Q.M., Wu, B., Zhao, H.M., and Xu, S.J., Numerical simulation and analysis of gas hydrate mining pipe hydraulic lifting, J. Cent. South Univ. (Sci. Technol.), 2015, vol. 46, no. 11, pp. 4062–4069. https://doi.org/10.11817/j.issn.1672-720711.013

  8. Berrouk, A.S., Jiang, P., Safiyullah, F., and Basha, M., CFD modelling of hydrate slurry flow in a pipeline based on Euler-Euler approach, Prog. Comput. Fluid Dyn., 2020, vol. 20, no. 3, pp. 156–168. https://doi.org/10.1504/PCFD.2020.107246

    Article  MathSciNet  Google Scholar 

  9. Balakin, B.V., Hoffmann, A.C., and Kosinski, P., Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow, Chem. Eng. Sci., 2011, vol. 66, no. 4, pp. 755–765. https://doi.org/10.1016/j.ces.2010.11.034

    Article  Google Scholar 

  10. Balakin, B.V., Pedersen, H., Kilinc, Z., Hoffmann, A.C., Kosinski, P., and Høiland, S., Turbulent flow of freon R11 hydrate slurry, J. Pet. Sci. Eng., 2010, vol. 70, pp. 177–182. https://doi.org/10.1016/j.petrol.2009.11.007

    Article  Google Scholar 

  11. Balakin, B.V., Lo, S., and Kosinski, P., Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique, Chem. Eng. Sci., 2016, vol. 153, pp. 45–57. https://doi.org/10.1016/j.ces.2016. 07.010

  12. Song, G.C., Li, Y.X., Wang, W.C., Jiang, K., Shi, Z.Z., and Yao, S.P., Numerical simulation of hydrate slurry flow behavior in oil-water systems based on hydrate agglomeration modeling, J. Pet. Sci. Eng., 2018, vol. 169, pp. 393–404. https://doi.org/10.1016/j.petrol.2018.05.073

    Article  Google Scholar 

  13. Yao, S.P., Li, Y.X., Wang, W.C., Song, G.C., Shi, Z.Z., Wang, X.Y., and Liu, S., Investigation of hydrate slurry flow behaviors in deep-sea pipes with different inclination angles, Oil Gas Sci. Technol., 2019, vol. 74, no. 1, p. 48. https://doi.org/10.2516/ogst/2019020

    Article  Google Scholar 

  14. Yao, S.P., Li, Y.X., and Wang, W.C., Numerical simulation of hydrate slurry flow characteristics in vertical pipes based on population balance theory, Int. J. Oil, Gas Coal Technol., 2020, vol. 25, no. 3, pp. 319–339. https://doi.org/10.1504/ijogct.2020.110389

    Article  Google Scholar 

  15. Liu, Z.Y., Mehrdad, V.F., Yang, M.J., Li, X.B., Zhao, J.F., Song, Y.C., and Yang, J.H., Hydrate slurry flow characteristics influenced by formation, agglomeration and deposition in a fully visual flow loop, Fuel, 2020, vol. 277, p. 118066. https://doi.org/10.1016/j.fuel.2020.118066

  16. Yan, K.L., Wu, W.R., Hu, X.Y., and Qu, Y.F., Study on the natural gas hydrate kinetic control technology and application in SINOPEC, Appl. Chem. Ind., 2020, vol. 49, no. 4, pp. 997–1001.

    Google Scholar 

  17. Ding, J. and Gidaspow, D., A bubbling fluidization model using kinetic theory of granular flow, AIChE J., 1990, vol. 36, no. 4, pp. 523–538. https://doi.org/10.1002/aic.690360404

    Article  Google Scholar 

  18. Wu, C.L., Nandakumar, K., and Berrouk, A.S., Enforcing mass conservation in DPM-CFD models of dense particulate flows, Chem. Eng. J., 2011, vol. 174, no. 1, pp. 475–481. https://doi.org/10.1016/j.cej.2011.08.033

    Article  Google Scholar 

  19. Berrouk, A.S., Stock, D.E., Laurence, D., and Riley, J.J., Heavy particle dispersion from a point source in turbulent pipe flow, Int. J. Multiphase Flow, 2008, vol. 34, no. 10, pp. 916–923. https://doi.org/10.1016/j.ijmultiphaseflow.2008.04.002

    Article  Google Scholar 

  20. Pabst, W., Fundamental considerations on suspension rheology, Ceram.-Silik., 2004, vol. 48, no.1, pp. 6–13.

    Google Scholar 

  21. Hulburt, H.M. and Katz, S., Some problems in particle technology, Chem. Eng. Sci., 1964, vol. 19, no. 8, pp. 555–574. https://doi.org/10.1016/0009-2509(64)85047-8

    Article  Google Scholar 

  22. Meyer, C.J. and Deglon, D.A., Particle collision modeling—a review, Miner. Eng., 2011, vol. 24, no. 8, pp. 719–730. https://doi.org/10.1016/j.mineng.2011.03.015

    Article  Google Scholar 

  23. Camp, T.R. and Stein, P.C., Velocity gradients and internal work in fluid motion, J. Boston Soc. Civ. Eng., 1943, vol. 30, no. 4, pp. 219–237.

    Google Scholar 

  24. Saffman, P.G. and Turner, J.S., On the collision of drops in turbulent clouds, J. Fluid Mech., 1956, vol. 1, no. 1, pp. 16–30. https://doi.org/10.1017/S0022112056000020

    Article  ADS  MATH  Google Scholar 

  25. Abrahamson, J., Collision rates of small particles in a vigorously turbulent fluid, Chem. Eng. Sci., 1975, vol. 30, no. 11, pp. 1371–1379. https://doi.org/10.1016/0009-2509(75)85067-6

    Article  Google Scholar 

  26. Lehr, F., Millies, M., and Mewes, D., Bubble-size distributions and flow fields in bubble columns, AIChE J., 2002, vol. 8, no. 11, pp. 2426–2443. https://doi.org/10.1002/aic.690481103

    Article  Google Scholar 

  27. Wittstruck, T.A., Brey, W.S., Buswell, A.M., and Rodebush, W.H., Solid hydrates of some halomethanes, J. Chem. Eng. Data, 1961, vol. 6, no. 3, pp. 343–346. https://doi.org/10.1021/je00103a011

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Major Program no.: U19B200052), Science and Technology Innovation Seedling Project of Sichuan Province, China (no.: 2021079), National Natural Science Foundation Young Scientists Fund of China (no.: 51904259), Sichuan Outstanding Youth Fund Program, China (no.: 19JCQN0081) and School-Level Key Program of Chengdu Technological University, China (nos.: 2021ZR006 and 2022ZR019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. Yu, C. J. Han or L. Wang.

Ethics declarations

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Han, C.J., Wang, L. et al. Investigation of the Behavior of Hydrate Slurry Flow in the Bend Based on the CFD-PBM Approach. Fluid Dyn 58, 684–700 (2023). https://doi.org/10.1134/S0015462822601255

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822601255

Keywords:

Navigation