Skip to main content
Log in

The Radiative Gas Dynamics of the Apollo-4 Command Module during Superorbital Earth Entry

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of the radiative gas dynamics of superorbital entry of the Apollo-4 command module into the Earth’s dense atmosphere has been numerically solved in the two-dimensional formulation of the flow around the front aerodynamic shield in the velocity range of the entry into the Earth’s dense atmosphere V = 10.7–5.75 km/s and in the altitude range Н = 91.5–35.0 km. The specific trajectory segments with a strongly nonequilibrium flow in the shock layer, the most thermally loaded segments of the trajectory, and the segments with strong radiative-gasdynamic interaction in the relatively dense and highly rarefied oncoming flow have been determined. The distributions of densities of convective and radiative heat fluxes along the streamlined surface have been obtained. The spectral composition of the heat radiation has been studied. The calculation results have been successfully compared with the flight experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.

Similar content being viewed by others

REFERENCES

  1. Anfimov, N.A. and Rumynskii, A.N., Radiation and convective heat transfer and heat protection of space vehicles landed at the Earth’s surface and surfaces of other planets of the Solar system, Problemy mekhaniki i teploobmena v kosmicheskoi tekhnike (Problems of Mechanics and Heat Transfer in Space Engineering), Moscow: Mashinostroenie, 1982, pp. 54–81.

    Google Scholar 

  2. Lee, D.B., Bertin, J.J., and Goodrich, W.D., Heat transfer rate and pressure measurements obtained during Apollo orbital entries, NASA TN D-6028, 1970.

  3. Lee, D.B. and Goodrich, W.D., The aerodynamic environment of the Apollo command module during superorbital entry, NASA TN D-6792, 1972.

  4. Hilje, E.R., Entry aerodynamics of lunar return conditions obtained from the flight of Apollo-4 (AS-501), NASA TN D-5399, 1969.

  5. Lee, D.B., Apollo experience report—Aerothermodynamics evaluation, NASA TN D-6843, 1972.

  6. Edwards, J.R. and Liou, M.-S., Low-diffusion flux-splitting methods for flows at all speeds, AIAA J., 1998, vol. 36, no. 9, pp. 1610–1617.  https://doi.org/10.2514/2.587

    Article  ADS  Google Scholar 

  7. Surzhikov, S.T., Teplovoe izluchenie gazov i plazmy (Heat Radiation of Gases and Plasma), Moscow: Izd-vo Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2004.

  8. Surzhikov, S.T. and Shang, J.S., Radiative and convective heating of Orion space vehicles at earth orbital entries, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, Fla., 2011, AIAA, 2011, p. 2011-0251.  https://doi.org/10.2514/6.2011-251

  9. Surzhikov, S.T., Data base of atomic lines for radiative gas dynamic models, eighth AIAA/ASME Joint Thermophysics and Heat Transfer Conf., St. Louis, Miss., 2002, AIAA, 2002, p. 02-2898.  https://doi.org/10.2514/6.2002-2898

  10. Surzhikov, S.T., Opticheskie svoistva gazov i plazmy (Optical Properties of Gases and Plasma), Moscow: Izd-vo Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2004.

  11. NIST Atomic Spectra Database Lines. http://physics.nist.gov/PhysRefData/.

  12. Sobel’man, I.I., Vvedenie v teoriyu atomnykh spektrov (Introduction to the Theory of Atomic Spectra), Moscow: Gos. Izd-vo Fiz.-Mat. Literatury, 1963.

  13. Surzhikov, S.T., A study of the influence of kinetic models on calculations of the radiation-convective heating of a space vehicle in Fire-II flight experiment, Russ. J. Phys. Chem. B, 2008, vol. 2, no. 5, pp. 814–826. https://doi.org/10.1134/S1990793108050254

    Article  Google Scholar 

  14. Surzhikov, S.T. and Shang, J.S., Fire-II flight data simulations with different physical-chemical kinetics and radiation models, Front. Aerosp. Eng., 2014, vol. 4, no. 2, pp. 70–92.

    Article  Google Scholar 

  15. Park, Ch., Jaffe, R.L., and Partridge, H., Chemical-kinetic parameters of hyperbolic Earth entry, J. Thermophys. Heat Transfer, 2001, vol. 15, no. 1, pp. 76–90.  https://doi.org/10.2514/2.6582

    Article  Google Scholar 

  16. Thermodynamic Properties of Individual Substances, vol. 1: Elements O, H(D, T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P, and Their Compounds, part 1: Methods and Computation, Gurvich, L.V., Veyts, I.V., Alcock, C.B., and Iorish, V.S., Eds., Hemisphere Publishing Corporation, 1989, fourth ed.

  17. Surzhikov, S.T., Radiatsionnaya gazovaya dimanika spuskaemykh kosmicheskikh apparatov. Mnogotemperaturnye modeli (Radiative Gas Dynamics of Space Capsules: Multitemperature Models), Moscow: Inst. Probl. Mekhaniki Ross. Akad. Nauk, 2013.

  18. Olynick, D.R., Henline, W.D., Hartung, L.C., and Candler, G.V., Comparison of coupled radiative flow solutions with project Fire-II flight data, J. Thermophys. Heat Transfer, 1995, vol. 9, no. 4, pp. 586–594.  https://doi.org/10.2514/3.712

    Article  Google Scholar 

  19. Johnston, C.O., Hollis, B.R., and Sutton, K., Nonequilibrium stagnation-line radiative heating for Fire-II, J. Spacecr. Rockets, 2008, vol. 45, no. 6, pp. 1185–1195.  https://doi.org/10.2514/1.33008

    Article  ADS  Google Scholar 

  20. Surzhikov, S.T., The role of atomic lines in radiation heating of the experimental space vehicle Fire-II, Dokl. Phys., 2015, vol. 60, no. 10, pp. 465–470.  https://doi.org/10.1134/S1028335815100110

    Article  ADS  Google Scholar 

  21. Fay, J.A. and Riddell, F.R., Theory of stagnation point heat transfer in dissociated air, J. Aeronaut. Sci., 1958, vol. 25, no. 2, pp. 73–85.  https://doi.org/10.2514/8.7517

    Article  Google Scholar 

  22. Park, C., Stagnation-point radiation for Apollo-4—A review and current status, 35th AIAA Thermophysics Conf., Anaheim, Calif., 2001, AIAA, 2001, p. 2001-3070.  https://doi.org/10.2514/6.2001-3070

  23. Detra, R.W., Kemp, N.H., and Riddell, F.R., Addendum to heat transfer to satellite vehicles re-entry the atmosphere, Jet Propul., 1957, vol. 27, no. 12, pp. 1256–1257.  https://doi.org/10.2514/8.12520

    Article  Google Scholar 

  24. Page, W.A., Compton, D.L., Borucki, W.J., Ciffone, D.L., and Cooper, D.M., Radiative transport in inviscid nonadiabatic stagnation-region shock layers, AIAA third Thermophysics Conf., Los Angeles, 1968, AIAA, 1968, p. 1968-784.  https://doi.org/10.2514/6.1968-784

  25. Ried, R.C. Jr., Rochelle, W.C., and Milhoan, J.D., Radiative heating to the Apollo command module: Engineering prediction and flight measurements, NASA TM X-58091, 1972.

  26. Tauber, M.E. and Sutton, K., Stagnation-point radiative heating relations for Earth and Mars entries, J. Spacecr., 1991, vol. 28, no. 1, pp. 40–42.  https://doi.org/10.2514/3.26206

    Article  Google Scholar 

  27. Hartung, L.C., Nonequilibrium radiative heating prediction method for aeroassist flowfields with coupling to flowfield solvers, PhD Dissertation, Raleigh, N.C.: North Carolina State Univ., 1991.

  28. Balakrishnan, A., Park, C., and Green, M.J., Radiative viscous shock layer analysis of Fire, Apollo, and PSET flight data, Progr. Astronaut. Aeronaut.: Thermophys. Aspects Re-Entry Flows, 1986, vol. 103, pp. 514–540.

    Google Scholar 

Download references

Funding

The work is supported by the state assignment, project no. АААА-А20-120011690135-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Surzhikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surzhikov, S.T. The Radiative Gas Dynamics of the Apollo-4 Command Module during Superorbital Earth Entry. Fluid Dyn 57 (Suppl 2), S515–S543 (2022). https://doi.org/10.1134/S0015462822100718

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822100718

Keywords:

Navigation