Skip to main content
Log in

Numerical Simulation of Air Ionization in the RAM-C-II Flight Experiment

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A two-dimensional numerical analysis of experimental data on the degree of ionization of a compressed layer near the surface of a spacecraft having the shape of a cone blunted in a sphere at a flight velocity of more than 7 km/s at altitudes of 61–81 km is presented. The discussed data of the flight experiment were obtained within the framework of the RAM-C research project. A model of nonequilibrium physicochemical processes in a compressed layer behind the front of the head shock wave, whose gas dynamics is described by the Navier–Stokes equations, is discussed. Various models of chemical kinetics are studied taking into account the processes of nonequilibrium dissociation and associative ionization. When using models of nonequilibrium dissociation, a good description of flight data on the electron density was achieved not only under conditions close to equilibrium, but also in the absence of thermalization of the internal degrees of freedom of high-temperature air molecules in the compressed layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Agafonov, V.P., Vertushkin, V.K., Gladkov, A.A., and Polyakov, O.Yu., Neravnovesnye fiziko-khimicheskie protsessy v aerodinamike (Nonequilibrium Physical and Chemical Processes in Aerodynamics), Moscow: Mashinostroenie, 1972.

  2. Martin, J.J., Atmospheric Reentry: An Introduction to Its Science and Engineering, Englewood Cliffs, N.J.: Prentice–Hall, 1966.

    Google Scholar 

  3. Park, C., Nonequilibrium Hypersonic Aerothermodynamics, New-York: Wiley, 1990.

  4. Sarma, G.S.R., Physico–chemical modelling in hypersonic flow simulation, Progr. Aerosp. Sci., 2000, vol. 36, nos. 3–4, pp. 281–349.  https://doi.org/10.1016/S0376-0421(00)00004-X

    Article  ADS  Google Scholar 

  5. Candler, G., RTO-AVT/VKI Lecture Series on Non-Equilibrium Gas Dynamics from Physical Models to Hypersonic Flights, Von Karman Inst. Fluid Dynamics, 2008.

  6. Shang, J.S. and Surzhikov, S.T., Nonequilibrium radiative hypersonic flow simulation, Progr. Aerosp. Sci., 2012, vol. 53, pp. 46–65.  https://doi.org/10.1016/j.paerosci.2012.02.003

    Article  ADS  Google Scholar 

  7. Surzhikov, S.T., Radiatsionnaya gazovaya dimanika spuskaemykh kosmicheskikh apparatov. Mnogotemperaturnye modeli (Radiative Gas Dynamics of Space Capsules: Multitemperature Models), Moscow: Inst. Probl. Mekhaniki Ross. Akad. Nauk, 2013.

  8. Surzhikov, S.T., A study of the influence of kinetic models on calculations of the radiation-convective heating of a space vehicle in Fire-II flight experiment, Russ. J. Phys. Chem. B, 2008, vol. 2, no. 5, pp. 814–826. https://doi.org/10.1134/S1990793108050254

    Article  Google Scholar 

  9. Surzhikov, S.T., Two-dimensional numerical analysis of flow ionization in the RAM-C-II flight experiment, Russ. J. Phys. Chem. B, 2015, vol. 9, no. 1, pp. 69–86.  https://doi.org/10.1134/S1990793115010200

    Article  Google Scholar 

  10. Park, C., Review of chemical-kinetic problems of future NASA missions, I: Earth entries, J. Thermophys. Heat Transfer, 1993, vol. 15, no. 3, pp. 385–398.  https://doi.org/10.2514/3.431

    Article  Google Scholar 

  11. Treanor, C.E. and Marrone, P.V., Effect of dissociation on the rate of vibrational relaxation, Phys. Fluids, 1962, vol. 5, no. 9, pp. 1022–1026.  https://doi.org/10.1063/1.1724467

    Article  ADS  Google Scholar 

  12. Marrone, P.V. and Treanor, C.E., Chemical relaxation with preferential dissociation from excited vibrational levels, Phys. Fluids, 1963, vol. 6, no. 9, pp. 1215−1221.  https://doi.org/10.1063/1.1706888

    Article  ADS  MATH  Google Scholar 

  13. Millikan, R.C. and White, D.R., Systematic of vibrational relaxation, J. Chem. Phys., 1963, vol. 39, no. 12, pp. 3209−3212.  https://doi.org/10.1063/1.1734182

    Article  ADS  Google Scholar 

  14. Kuznetsov, N.M., Kinetika monomolekulyarnykh reakcii (Kinetics of Monomolecular Reactions), Moscow: Nauka, 1982.

  15. Malkin, O.A., Relaksatsionnye protsessy v gaze (Relaxation Processes in Gas), Moscow: Atomizdat, 1971.

  16. Stupochenko, E.V., Losev, S.A., and Osipov, A.I., Relaksatsionnye protsessy v udarnykh volnakh (Relaxation Processes in Shock Waves), Moscow: Nauka, 1965.

  17. Shcherbak, V.G., Comparison of models of dissociation in the absence of equilibrium between the translational and vibrational degrees of freedom, J. Appl. Mech. Tech. Phys., 1992, vol. 33, no. 4, pp. 501–506.  https://doi.org/10.1007/BF00864272

    Article  ADS  Google Scholar 

  18. Gorshkov, A.B., Effect of physical and chemical nonequilibrim processes on the parameters of the near wake downstream of a spacecraft, Fluid Dyn., 2009, vol. 44, no. 5, p. 785.  https://doi.org/10.1134/S0015462809050172

    Article  ADS  MATH  Google Scholar 

  19. Beloshitskiy, A.V., Vlasov, V.V., Gorshkov, A.B., Zhurin, S.V., Churakov, D.A., and Shuvalov, M.P., Impact of non-equilibrium effects on heat transfer characteristics of the Orel reentry vehicle, Kosmicheskaya Tekh. Tekhnol., 2022, no. 2, pp. 27–37.

  20. Candler, G.V. and MacCormack R.W., The computation of hypersonic ionized flows in chemical and thermal nonequilibrium, J. Thermophys. Heat Transfer, 1991, vol. 5, no. 3, pp. 266−273.

    Article  ADS  Google Scholar 

  21. Josyula, E. and Shang, J., Computation of nonequilibrium hypersonic flowfields around hemisphere cylinders, J. Thermophys. Heat Transfer, 1993, vol. 7, no. 4, pp. 668–679.  https://doi.org/10.2514/3.476

    Article  Google Scholar 

  22. Boyd, I.D., Modeling of associative ionization reactions in hypersonic rarefied flows, Phys. Fluids, 2007, vol. 19, p. 096102.  https://doi.org/10.1063/1.2771662

  23. Surzhikov, S.T., Shock-layer ionization in the RAM-C-II flight experiment, Dokl. Phys., 2014, vol. 59, no. 5, pp. 229–235.  https://doi.org/10.1134/S1028335814050048

    Article  ADS  Google Scholar 

  24. Goshkov, A.B., The simulation of ultraviolet radiation under conditions of re-entry of space vehicle from near-earth orbit, High Temp., 2010, vol. 48, no. 1, pp. 12–22. https://doi.org/10.1134/S0018151X10010037

    Article  Google Scholar 

  25. Surzhikov, S.T., Spectral radiation emissivity of a returning orbital space vehicle, Dokl. Akad. Nauk, 2018, vol. 482, no. 4, pp. 393–397. https://doi.org/10.31857/S086956520003101-4

    Article  Google Scholar 

  26. Akey, N.D. and Cross, A.E. Radio Blackout Alleviation and Plasma Diagnostic Results from a 25 000 Foot per Second Blunt Body Reentry, Washington: NASA, 1970.

    Google Scholar 

  27. Grantham, W.L., Flight results of 25000 foot per second blunt body reentry experiment using microwave reflectometrs to measure plasma electron density and standoff distance, NASA TN D-6062, 1970.

  28. Jones, W.L., Jr. and Cross, A.E., Electrostatic probe measurements of plasma parameters for two reentry flight experiments at 25000 feet per second, NASA TN D-6617, 1972.

  29. Hirschfelder, J.O., Curtiss, Ch.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1964.

    MATH  Google Scholar 

  30. Ginzburg, I.P., Friction and Heat Transfer at Motion of Gas Mixture, Leningrad: Leningrad. Gos. Univ., 1975.

    Google Scholar 

  31. Bird, R.B., Stewart, W.E., and Lightfoot, E.W., Transport Phenomena, New York: Wiley, 2002, 2nd ed.

    Google Scholar 

  32. Svehla, R.A., Estimated viscosities and thermal conductivities of gases at high temperatures, NASA TR-R-132, 1962.

  33. Thermodynamic Properties of Individual Substances, vol. 1: Elements O, H(D, T), F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P, and Their Compounds, part 1: Methods and Computation, Gurvich, L.V., Veyts, I.V., Alcock, C.B., and Iorish, V.S., Eds., Hemisphere Publishing Corporation, 1989, 4th ed.

  34. Losev, S.A. and Generalov, N.A., On the vibration excitation and breakdown of oxygen molecules at high temperatures, Dokl. Akad. Nauk SSSR, 1961, vol. 141, no. 5, pp. 1072–1075.

    Google Scholar 

  35. Edwards, J.R. and Liou, M.-S., Low-diffusion flux-splitting methods for flows at all speeds, AIAA J., 1998, vol. 36, no. 9, pp. 1610–1617.  https://doi.org/10.2514/2.587

    Article  ADS  Google Scholar 

  36. Surzhikov, S.T., Analytical methods of constructing finite-differences grids for computing aerothermodynamics of space capsules, Vestn. Mosk. Gos. Tekh. Univ. N.E. Baumana, 2004, no. 2, pp. 24–50.

  37. Samarskii, A.A., Vvedenie v chislennye metody (Introduction to Numerical Methods), Moscow: Nauka, 1987.

  38. Grasso, F. and Capano, G., Modeling of ionizing hypersonic flows in nonequilibrium, J. Spacecr. Rockets, 1995, vol. 32, no. 2, pp. 217–224.  https://doi.org/10.2514/3.26599

    Article  ADS  Google Scholar 

  39. Wilson, J., Ionization rates of air behind high speed shock waves, Phys. Fluids, 1966, vol. 9, no. 10. pp. 1913–1921.  https://doi.org/10.1063/1.1761543

    Article  ADS  Google Scholar 

  40. Lin, S.C. and Teare, J., Rate of ionization behind shock waves in air. II. Theoretical interpretations, Phys. Fluids, 1963, vol. 6, no. 3, p. 355.  https://doi.org/10.1063/1.1706741

    Article  ADS  MATH  Google Scholar 

  41. Bortner, M.N., Chemical kinetics in a reentry flow field, R 63SD63, Philadelphia, Pa.: General Electric Space Sciences Laboratory, Missile and Space Division, 1963.

    Google Scholar 

  42. Bortner, M., Review of rate constants of selected reactions of interest in reentry flow fields in the atmosphere, NBS Technical Note 484, Washington, D.C.: National Bureau of Standards, 1969.

    Google Scholar 

  43. Hayes, D.T. and Rotman, W., Microwave and electrostatic probe measurements on a blunt body re-entry vehicle, AIAA J., 1973, vol. 9, no. 5, p. 675.  https://doi.org/10.2514/3.50506

    Article  ADS  Google Scholar 

  44. Zemlyanskii, B.A., Lunev, V.V., Vlasov, V.I., Gorshkov, A.B., Zalogin, G.N., Kovalev, R.V., Marinin, V.P., and Murzinov, I.N., Konvektivnyi teploobmen letatel’nykh apparatov (Convective Heat Transfer of Aerial Vehicles), Moscow: Fizmatlit, 2014.

  45. Gupta, R., Yos, J., and Thompson, R., A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K, NASA TM 101528, 1989.

  46. Blottner, F.G., Viscous shock layer at the stagnation point with nonequilibrium air chemistry, AIAA J., 1969, vol. 7, no. 12, pp. 2281–2288. https://doi.org/10.2514/3.5528

    Article  ADS  Google Scholar 

  47. Wray, K., Chemical Kinetics of High Temperature Air, ARS Progress in Astronautics and Rocketry, vol. 7, New York: Academic Press, 1962.

  48. Bussing, T.R.A. and Eberhardt S., Chemistry associated with hypersonic vehicles, 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conf., Honolulu, Hawaii, 1987, AIAA, 1987, p. 87-1292.  https://doi.org/10.2514/6.1987-1292

  49. Surzhikov, S.T., Two-dimensional numerical analysis of flux ionization in the RAM-C-II flight experiment, Chem. Phys., 2015-a, vol. 34, no. 2, pp. 24–42. https://doi.org/10.7868/S0207401X15020090

  50. Surzhikov, S.T., Spatial ionization effects of a shock layer in the RAM-C-II flight experiment, Dokl. Phys., 2015, vol. 60, no. 2, pp. 89–94.  https://doi.org/10.1134/S102833581502010X

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 22-11-00062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Surzhikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surzhikov, S.T. Numerical Simulation of Air Ionization in the RAM-C-II Flight Experiment. Fluid Dyn 57 (Suppl 2), S279–S298 (2022). https://doi.org/10.1134/S0015462822100639

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822100639

Keywords:

Navigation