Skip to main content
Log in

Asymmetric Self-Similar Viscous Gas Flows in a Wedge

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The flow of a viscous compressible gas from the apex of a flat wedge is considered. It is shown that an asymmetric self-similar flow is possible and is realized when special boundary conditions for the temperature of the channel walls are specified. For the case of low subsonic gas-flow velocities at constant but different temperatures of the wedge walls, an asymptotic solution is found. In the general case, the resulting system of ordinary differential equations is solved numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Jeffery, G.B.L., The two-dimensional steady motion of a viscous fluid, London, Edinburgh Dublin Phil. Mag. J. Sci., Ser. 6, 1915, vol. 29, issue 172, pp. 455–465.

    Google Scholar 

  2. Hamel, G., Spiralförmige Bewegungen zäher Flüssigkeiten, Jahresber. Dtsch. Math.-Ver., 1917, vol. 25, pp. 34–60.

    MATH  Google Scholar 

  3. Landau, L.D. and Lifshitz, E.M., Gidrodinamika (Fluid Mechanics), Moscow: Nauka, 1986.

    Google Scholar 

  4. Aristov, S.N., Knyazev, D.V., and Polyanin, A.D., Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 547–566.

    Article  Google Scholar 

  5. Williams, J.C., III, Conical nozzle flow with velocity slip and temperature jump, AIAA J., 1967, vol. 5, no. 12, pp. 2128–2134.

    Article  ADS  Google Scholar 

  6. Williams, J.C., III, Diabatic internal source flow, Appl. Sci. Res., 1967, vol. 17, pp. 407–421.

    Article  Google Scholar 

  7. Williams, J.C., III, Conical nozzle flow of a viscous compressible gas with energy extraction, Appl. Sci. Res., 1968, vol. 19, pp. 285–301.

    Article  MATH  Google Scholar 

  8. Brutyan, M.A. and Ibragimov, U.G., Self-similar flow of a viscous gas from source in an apex of cone, Uch. Zap. TsAGI, 2018, vol. 49, no. 3, pp. 26–35.

    Google Scholar 

  9. Brutyan, M.A. and Ibragimov, U.G., Self-similarity parameter effect on critical characteristics of Hamel type compressible flow, Tr. Mosk. Aviats. Inst., 2018, issue 100. http://trudymai.ru/published.php?ID=93319.

  10. Byrkin, A.P., Concerning one exact solution of the Navier–Stokes equations for compressible gas, Prikl. Mat. Mekh., 1969, vol. 33, no. 1, pp. 152–157.

    MathSciNet  MATH  Google Scholar 

  11. Brutyan, M.A., Self-similar solutions of Jeffrey–Gamel type for compressible viscous gas flow, Uch. Zap. TsAGI, 2017, vol. 48, no. 6, pp. 13–22.

    Google Scholar 

  12. Brutyan, M.A. and Krapivskii, P.L., Exact solutions of the stationary Navier-Stokes equations of a viscous heat-conducting gas for a flat jet from a linear source, Prikl. Mat. Mekh., 2018, vol. 82, no. 5, pp. 644–656.

    Google Scholar 

  13. Golubkin, V.N. and Sizykh, G.B., Concerning compressible Couette flow, Uch. Zap. TsAGI, 2018, no. 1, pp. 27–38.

  14. Khorin, A.N. and Konyukhova, A.A., Couette flow of hot viscous gas, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2020, issue 24, no. 2, pp. 365–378.

  15. Brutyan, M.A. and Ibragimov, U.G., Two-dimensional self-similar flow in a channel of viscous gas with transfer coefficients arbitrarily depending on temperature, Prikl. Mat. Mekh., 2021, vol. 85, no. 6, pp. 755–764.

    MATH  Google Scholar 

  16. Probstein, R.F. and Kemp, N.H., Viscous aerodynamic characteristics in hypersonic rarefied gas flow, J. Aerosp. Sci., 1960, vol. 27, no. 3, pp. 174–192.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ferziger, J.H. and Kaper, H.G., Mathematical Theory of Transport Processes in Gases, North-Holland, 1972.

    Google Scholar 

  18. Ernst, M.N., Nonlinear model-Boltzmann equations and exact solutions, Phys. Rev., 1981, vol. 78, no. 1, pp. 1–171.

    MathSciNet  Google Scholar 

  19. Ernst, M.N., Exact solutions of nonlinear Boltzmann equation, J. Stat. Phys., 1984, vol. 34, no. 516, pp. 1001–1017.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Bobylev, A.V., Exact solutions of the nonlinear Boltzmann equation and the theory of relaxation of a Maxwellian gas, Teor. Mat. Fiz., 1984, vol. 60, no. 2, pp. 280–310.

    Article  MATH  Google Scholar 

  21. Lifshitz, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (Physical Kinetics), Moscow: Nauka, Gl. red. fiz-mat. lit., 1979, vol. 10.

  22. Barenblatt, G.I., Podobie, avtomodel’nost’, promezhutochnaya asimptotika (Self-Similarity, and Intermediate Asymptotics), Leningrad: Gidrometeoizdat, 1982.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Brutyan or U. G. Ibragimov.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brutyan, M.A., Ibragimov, U.G. Asymmetric Self-Similar Viscous Gas Flows in a Wedge. Fluid Dyn 57, 923–931 (2022). https://doi.org/10.1134/S0015462822070047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822070047

Keywords:

Navigation