Skip to main content

Investigation of Heat Transfer to HfB2-SiC-Based Ceramics in Underexpanded Dissociated-Nitrogen Flows and Analysis of the Surface

Abstract—

Experiments on heat transfer to HfB2-SiC-based ceramics specimens in underexpanded supersonic flows of high-enthalpy nitrogen are performed on the VGU-4 induction high-frequency (HF) plasmatron of the Institute for Problems in Mechanics of the Russian Academy of Sciences. The nitrogen plasma flows in the discharge channel of the plasmatron and the underexpanded dissociated-nitrogen flow past a cylindrical model with the ceramics specimen was simulated numerically within the framework of the Navier–Stokes and simplified Maxwell equations. Basing on the comparison of the experimental and calculated data the possible range of the effective coefficient of the heterogeneous nitrogen atom recombination on the ceramics surface is determined as a function of its total emissivity at a temperature of 2000°C. The microstructure and the element and phase compositions of the surfaces of the HfB2-SiC-based ceramics specimens and the HfB2-SiC-G-based ceramics specimen modified by two volume percents of graphene are studied after they have been subjected to the action of supersonic flow of partially dissociated nitrogen.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Servadei, F., Zoli, L., Galizia, P., Melandri, C., and Sciti, D., Preparation of UHTCMCs by hybrid processes coupling polymer infiltration and pyrolysis with hot pressing and vice versa, J. Eur. Ceram. Soc., 2022, no. 42, pp. 2118–2126. https://doi.org/10.1016/j.jeurceramsoc.2021.12.039

  2. Aguirre, T.G., Lamm, B.W., Cramer, C.L., and Mitchell, D.J., Zirconium-diboride silicon-carbide composites: A review, Ceram. Int., 2022, no. 48, pp. 7344–7361. https://doi.org/10.1016/j.ceramint.2021.11.314

  3. Mungiguerra, S., Cecere, A., Savino, R., Saraga, F., Monteverde, F., and Sciti, D., Improved aero-thermal resistance capabilities of ZrB2-based ceramics in hypersonic environment for increasing SiC content, Corros. Sci., 2021, no. 178, p. 109067. https://doi.org/10.1016/j.corsci.2020.109067

  4. Mungiguerra, S., Di Martino, G.D., Cecere, A., Savino, R., Zoli, L., Silvestroni, L., and Sciti, D., Ultra-high-temperature testing of sintered ZrB2-based ceramic composites in atmospheric re-entry environment, Int. J. Heat Mass Transfer, 2020, no. 156, p. 119910. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119910

  5. Simonenko, E.P., Simonenko, N.P., Gordeev, A.N., Kolesnikov, A.F., Chaplygin, A.V., Lysenkov, A.S., Nagornov, I.A., Sevastyanov, V.G., and Kuznetsov, N.T., Oxidation of HfB2-SiC-Ta4HfC5 ceramic material by a supersonic flow of dissociated air, J. Eur. Ceram. Soc., 2021, no. 41, pp. 1088–1098. https://doi.org/10.1016/j.jeurceramsoc.2020.10.001

  6. Zhuravleva, P.L., Lutsenko, A.N., Lebedeva, Y.E., Sorokin, O.Y., Gulyaev, A.I., Gordeev, A.N., and Kolesnikov, A.F., Formation of a glass layer in ceramic composite materials as a result of exposure to high-enthalpy flow, Glass. Ceram., 2021, no. 78, pp. 219–225. https://doi.org/10.1007/s10717-021-00383-z

  7. Sinitsyn, D.Y., Anikin, V.N., Eremin, S.A., Vanyushin, V.O., Shvetsov, A.A., and Bardin, N.G., Heat-resistant coatings of ZrB2–MoSi2–SiC on carbon-carbon composite materials for aerospace applications, Refract. Ind. Ceram., 2020, no. 61, pp. 456–462. https://doi.org/10.1007/s11148-020-00502-3

  8. Marschall, J., Pejakovic, D., Fahrenholtz, W.G., Hilmas, G.E., Panerai, F., and Chazot, O., Temperature jump phenomenon during plasmatron testing of ZrB2-SiC ultrahigh-temperature ceramics, J. Thermophys. Heat Transfer, 2012, no. 26, pp. 559–572. https://doi.org/10.2514/1.T3798

  9. Adibpur, F., Tayebifard, S.A., Zakeri, M., and Shahedi Asl, M., Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites, Ceram. Int., 2020, no. 46, pp. 156–164. https://doi.org/10.1016/j.ceramint.2019.08.243

  10. Jarman, J.D., Fahrenholtz, W.G., Hilmas, G.E., Watts, J.L., and King, D.S., Mechanical properties of fusion welded ceramics in the SiC-ZrB2 and SiC-ZrB2-ZrC systems, J. Eur. Ceram. Soc., 2022, no. 42, pp. 2107–2117. https://doi.org/10.1016/j.jeurceramsoc.2022.01.019

  11. Liu, C., Yuan, X., Wang, W., Liu, H., Li, C., Wu, H., and Hou, X., In-situ fabrication of ZrB2-ZrC-SiCnws hybrid nanopowders with tuneable morphology SiCnws, Ceram. Int., 2022, no. 48, pp. 4055–4065. https://doi.org/10.1016/j.ceramint.2021.10.195

  12. Simonenko, E.P., Simonenko, N.P., Sevastyanov, V.G., and Kuznetsov, N.T., ZrB2/HfB2–SiC ultra-high-temperature ceramic materials modified by carbon components: the review, Russ. J. Inorg. Chem., 2018, no. 63, pp. 1772–1795. https://doi.org/10.1134/S003602361814005X

  13. Shahedi Asl, M. and Ghassemi Kakroudi, M., Characterization of hot-pressed graphene reinforced ZrB2–SiC composite, Mater. Sci. Eng. A, 2015, no. 625, pp. 385–392. https://doi.org/10.1016/j.msea.2014.12.028

  14. Simonenko, E.P., Simonenko, N.P., Kolesnikov, A.F., Chaplygin, A.V., Lysenkov, A.S., Nagornov, I.A., Simonenko, T.L., Gubin, S.P., Sevastyanov, V.G., and Kuznetsov, N.T., Oxidation of graphene-modified HfB2-SiC ceramics by supersonic dissociated air flow, J. Eur. Ceram. Soc., 2022, no. 42, pp. 30–42. https://doi.org/10.1016/j.jeurceramsoc.2021.09.020

  15. Zhang, X., An, Y., Han, J., Han, W., Zhao, G., and Jin, X., Graphene nanosheet reinforced ZrB2–SiC ceramic composite by thermal reduction of graphene oxide, RSC Adv., 2015, no. 5, pp. 47060–47065. https://doi.org/10.1039/C5RA05922D

  16. Hays, G.N., Tracy, C.J., and Oskam, H.J., Surface catalytic efficiency of a sputtered molibdenium layer on quartz and pyrex of the recombination of nitrogen atoms, J. Chem. Phys., 1974, vol. 60, no. 5, pp. 2027–2034.

    ADS  Article  Google Scholar 

  17. Halpern, B. and Rosner, D.B., Chemical energy accomodation at catalytic surfaces. flow reactor studies of the association of nitrogen atoms at metals at high temperatures, Chem. Soc. Faraday Trans., 1978, vol. 74, no. 8, pp. 1883–1912.

    Article  Google Scholar 

  18. Zhestkov, B.E. and Knivel’, A.Ya., Interaction of a dissociated nitrogen flow with metal surfaces, Uch. Zap. TsAGI, 1979, vol, 10, no. 6, pp. 37–50.

    Google Scholar 

  19. Gordeev, A.N., Kolesnikov, A.F., and Yakushin, M.I., Effect of surface catalytic activity on nonequilibrium heat transfer in a subsonic jet of dissociated nitrogen, Fluid Dyn., 1985, vol. 20, no. 3, pp. 478—484.

    ADS  Article  Google Scholar 

  20. Kolodziej, P. and Stewart, D.A., Nitrogen recombination on high-temperature reusable surface insulation and the analysis of its effects on surface catalysis, AIAA Paper, 1987, no. 1637.

  21. Aleksandrov, E.N., Andronova, Yu.I., Zhestkov, B.E., Kozlov, S.N., and Litvin, A.S., Determination of the rates of heterogeneous nitrogen atom recombination on metals and quartz, in Gagarinskie nauchnye chteniya po kosmonavtike i aviatsii (Gagarin Scientific Readings on Cosmonautics and Aviation), Nauka: Moscow, 1987, pp. 132–140 [in Russian].

  22. Zalogin, G.N., Itin, P.G., Lunev, V.V., and Perov, S.L., Platinum sublimation in the case of catalytic heterogeneous atom recombination on its surface, Pisma Zh. Tekhn. Fiz., 1988, vol. 14, no. 22, pp. 2077–2081.

    Google Scholar 

  23. Vasil’evskii, S.A., Kolesnikov, A.F., and Yakushin, M.I., Determination of the effective probabilities of the heterogeneous recombination of atoms when heat flow is influenced by gas-phase reactions, High Temp., 1991, vol. 29, no. 3, pp. 411—419.

    Google Scholar 

  24. Berkut, V.D., Doroshenko, V.M., Kovtun, V.V., and Kudryavtsev N.N., Neravnovesnye fiziko-khimicheskie protsessy v giperzvukovoy aerodinamike (Nonequilibrium Physical and Chemical Processes in Hypersonic Aerodynamics), Moscow: Energoizdat, 1994.

  25. Kovalev, V.L., Geterogennye kataliticheskie protsessy pri vhode v atmosferu (Heterogeneous Catalytic Processes during the Entry into the Atmosphere), Moscow Univ. Press, 1999.

  26. Kovalev, V.L. and Kolesnikov, A.F., Experimental and theoretical simulation of heterogeneous catalysis in aerothermochemistry (a review), Fluid Dyn., 2005, vol. 40, no. 5, pp. 669—693.

    ADS  Article  Google Scholar 

  27. Gordeev, A.N. and Kolesnikov, A.F., Induction plasmatrons of the VGU series, in Aktual’nye problemy mekhaniki. Fiziko-khimicheskaya mekhanika zhidkostey i gazov (Topical Problems in Mechanics. Physico-Chemical Mechanics of Liquids and Gases), Nauka: Moscow, 2010, pp. 151–177.

  28. Gordeev, A.N., Kolesnikov, A.F., and Yakushin M.I., An induction plasma application to “Buran’s” heat protection tiles ground tests, SAMPE J., 1992, vol. 28, no. 3, pp. 29–33.

    Google Scholar 

  29. Kolesnikov, A.F., Lukomskii, I.V., Sakharov, V.I., and Chaplygin, A.V., Experimental and numerical modeling of heat transfer to graphite surface in underexpanded dissociated-nitrogen jets, Fluid Dyn., 2021, vol. 56, no. 6, pp. 897–905. https://doi.org/10.31857/S0568528121060074

    ADS  Article  MATH  Google Scholar 

  30. Lukomskii, I.V., Chaplygin, A.V., and Kolesnikov, A.F., Device for measuring the heat flux to the surface of a material heated in a high-enthalpy gas jet to high temperatures, Patent on a Useful Model, no. 205572 U1, Russian Federation, MPK G01N 25/00; no. 2021109253: application made April 5, 2021; published July 21, 2021.

  31. Marschall, J., Pejaković, D.A., Fahrenholtz, W.G., Hilmas, G.E., Panerai, F., and Chazot, O., Temperature jump phenomenon during plasmatron testing of ZrB2-SiC ultrahigh-temperature ceramics, J. Thermophys. Heat Transfer, 2012, vol. 26, no. 4, pp. 559–572.

    Article  Google Scholar 

  32. Scatteia, L., Borrelli, R., Cosentino, G., Bêche, E., Sans, J.L., and Balat-Pichelin, M., Catalytic and radiative behaviors of ZrB2-SiC ultrahigh temperature ceramic composites, J. Spacecraft Rockets, 2006, vol. 43, no. 5, pp. 1004–1012.

    ADS  Article  Google Scholar 

  33. Marschall, J. and Fletcher, D.G., High-enthalpy test environments, flow modeling and in situ diagnostics for characterizing ultra-high temperature ceramics, J. Europ. Ceram. Soc., 2010, vol. 30, no. 11, pp. 2323–2336.

    Article  Google Scholar 

  34. Afonina, N.E., Gromov, V.G., and Sakharov, V.I., HIGHTEMP technique of high temperature gas flows numerical simulations, in Proc. 5th Europ. Symp. on Aerothermodynics of Space Vehicles. Cologne, Germany, 2004. SP 563, Noordwijk: ESTEC, pp. 323–328.

  35. Termodinamicheskie svoystva individual’nykh veshchestv (Thermodynamic Properties of Individual Materials, Ed. by Glushko, V.P., Vols. 1 and 2, Moscow: Nauka, 1978.

  36. Godunov, S.K., Zabrodin, A.V., Ivanov, M.Ya., Kraiko, A.N., and Prokopov G.P., Chislennoe reshenie mnogomernykh zadach gazovoy dinamiki (Numerical Solution of Multidimensional Problems of Gasdynamics), Moscow: Nauka, 1976.

  37. Afonina, N.E., Vasil’evskii S.A., Gromov V.G., Kolesnikov, A.F., Pershin I.S., Sakharov, V.I., and Yakushin, M.I., Flow and heat transfer in underexpanded jets issuing from the sonic nozzle of a plasmatron, Fluid Dyn., 2002, vol. 37, no. 5, pp. 803–814.

    Article  Google Scholar 

  38. Sakharov, V.I., Numerical simulation of thermally and chemically nonequilibrium flows in underexpanded induction plasmatron jets, Fluid Dyn., 2007, vol. 42, no. 6, pp. 1007–1016.

    ADS  Article  Google Scholar 

  39. Vasil’evskii, S.A. and Kolesnikov, A.F., Numerical simulation of equilibrium induction plasma flows in a cylindrical plasmatron channel, Fluid Dyn., 2000, vol. 35, no. 5, pp. 769–772.

    Article  Google Scholar 

  40. Ibragimova, L.B., Smekhov, G.D., and Shatalov O.P., Dissociation rate constants of diatomic molecules under thermal equilibrium conditions, Fluid Dyn., 1999, vol. 34, no. 1, pp.153–157.

    ADS  Article  Google Scholar 

  41. Losev, S.A., Makarov, V.N., and Pogosbekyan, M.Yu., Model of physic-chemical kinetics behind the front of a very intense shock wave in air, Fluid Dyn., 1995, vol. 30, no. 2, pp. 299–309.

    ADS  Article  Google Scholar 

  42. Park, C., Review of chemical-kinetic problems of future NASA missions, Earth entries, J. Thermophys. Heat Transfer, 1993, vol. 7, no. 3, pp. 385–398.

    ADS  Article  Google Scholar 

  43. Losev, S.A., Makarov, V.N., Pogosbekyan, M.Ju., Shatalov, O.P., and Nikol’sky, V.S., Thermochemical nonequilibrium kinetic models in strong shock waves on air, AIAA Paper, 1990, no. 1994.

  44. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1954.

    MATH  Google Scholar 

  45. Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1977.

    Google Scholar 

  46. Afonina, N.E. and Gromov, V.G., Thermochemical nonequilibrium computations for a MARS express probe, Proc. 3rd Europ. Symp. Aerothermodynam. Space Vehicles, ESTEC, Noordwijk, The Netherlands, 1998, pp. 179–186.

  47. Gordeev, O.A., Kalinin, A.P., Komov, A.L., Lusternik, V.E., Samuilov, E.V., Sokolova, I.A., and Fokin, L.R., Obzory po teplofizicheskim svoistvam veshchestv (Reviews on Thermophysical Properties of Substances), TFTs, IVTAN, 1985, vol. 55, no. 5.

  48. Holleck, H., Legierungsverhalten von HfB2 mit Uran- und Übergangsmetalldiboriden, J. Nucl. Mater., 1967, no. 21, pp. 14–20. https://doi.org/10.1016/0022-3115(67)90724-6

  49. Burdick, C.L. and Owen, E.A., The atomic structure of carborundum determined by X-rays, J. Am. Chem. Soc., 1918, no. 40, pp. 1749–1759. https://doi.org/10.1021/ja02245a001

  50. Aigner, K., Lengauer, W., Rafaja, D., and Ettmayer, P., Lattice parameters and thermal expansion of Ti(CxN1 – x), Zr(CxN1 – x), Hf(CxN1 – x) and TiN1 – x from 298 to 1473 K as investigated by high-temperature X-ray diffraction, J. Alloys Compd., 1994, no. 215, pp. 121–126. https://doi.org/10.1016/0925-8388(94)90828-1

  51. Lengauer, W., Binder, S., Aigner, K., Ettmayer, P., Guillou, A., Debuigne, J., and Groboth, G., Solid state properties of group IVb carbonitrides, J. Alloys Compd., 1995, no. 217, pp. 137–147. https://doi.org/10.1016/0925-8388(94)01315-9

  52. Whittle, K.R., Lumpkin, G.R., and Ashbrook, S.E., Neutron diffraction and MAS NMR of cesium tungstate defect pyrochlores, J. Solid State Chem., 2006, no. 179, pp. 512–521. https://doi.org/10.1016/j.jssc.2005.11.011

Download references

Funding

The study was carried out according to the themes of the State Assignments of the Institute of Mechanics of Moscow State University and the Institute for Problems in Mechanics of the Russian Academy of Sciences Nos. АААА-А16-116021110205-0 and АААА-А20-120011690135-5, respectively, with the partial support of the Russian Foundation for Basic Research (grant no. 20-01-00056). The phase composition of the specimen surfaces was performed using the equipment of the Institute of General and Inorganic Chemistry operating under the financial support of the Ministry of Education and Science of Russian Federation within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. F. Kolesnikov, V. I. Sakharov or E. P. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Lebedev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kolesnikov, A.F., Kuznetsov, N.T., Muravyeva, T.I. et al. Investigation of Heat Transfer to HfB2-SiC-Based Ceramics in Underexpanded Dissociated-Nitrogen Flows and Analysis of the Surface. Fluid Dyn 57, 513–523 (2022). https://doi.org/10.1134/S0015462822040061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822040061

Keywords:

  • HF-plasmatron
  • dissociated nitrogen
  • undedrexpanded jets
  • heat transfer
  • catalytic recombination of nitrogen atoms
  • ceramics