Skip to main content

Gasdynamic and Thermal Effects of the Synthesis of Micron-Sized Particles by the Carbon Combustion Method in Straight-Flow and Three-Zone Reactors

Abstract

An axisymmetric two-temperature model for analyzing the synthesis of multiple oxides by the carbon combustion method is developed. The system of governing equations includes the mass, momentum, and energy conservation laws for the gas and solid phases in straight-flow and three-zone reactors. The results of an investigation of sharp temperature rise, or “wrong-way” reactor behavior, during the synthesis of micron-sized barium titanate powders with the consideration of thermal and mass dispersion are presented. The governing equations, together with the similarity parameters in the dimensionless form, are applied to numerical simulation of the effect of both gasdynamic and interphase resistance and axial and transverse dispersion during the synthesis of micron-sized barium titanate particles in straight-flow and three-zone reactors. It is concluded that the three-zone reactor has advantages in modeling the synthesis of micron-sized particles in the regimes of wrong-way behavior of the straight-flow reactor. The results of the calculations of the straight-flow and three-zone reactors are compared at the same values of dispersion, the pore sinuosity coefficient, the particle diameter, and the local Peclet number.

This is a preview of subscription content, access via your institution.

Fig 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Sharma, C.S. and Hughes, R., The behavior of an adiabatic fixed bed reactor for the oxidation of carbon monoxide: I. General parametric studies, Chem. Eng. Sci., 1979, vol. 34, p. 613.

    Article  Google Scholar 

  2. Sharma, C.S. and Hughes, R., The behavior of an adiabatic fixed bed reactor for the oxidation of carbon monoxide: II. Effect of perturbations, Chem. Eng. Sci., 1979, vol. 34, p. 625.

    Article  Google Scholar 

  3. Mehta, P.S., Sams, W.N., and Luss, D., Wrong-way behavior of packed-bed reactors: 1. The pseudo-homogeneous model, AIChE J., 1981, vol. 27, pp. 234–246. https://doi.org/10.1002/aic.690270210

    Article  Google Scholar 

  4. Boreskov, G.K. and Slinko, M.G., Modelling of chemical reactors, Pure Appl. Chem., 1965, vol. 10, p. 611.

    Article  Google Scholar 

  5. Crider, J.E. and Foss, A.S., Computational studies of transients in packed tubular chemical reactors, AIChE J., 1966, vol. 12, p. 514.

    Article  Google Scholar 

  6. Hoiberg, J.A., Lyche, B.C., and Foss, A.S., Experimental evaluation of dynamic models for a fixed-bed catalytic reactor, AIChE J., 1971, vol. 17, p. 1434.

    Article  Google Scholar 

  7. Chen, Y.C. and Luss, D., Wrong-way behavior of packed-bed reactors: influence of lnterphase transport, AIChE J., 1989, vol. 35, no. 7, pp. 1148–1156.

    Article  Google Scholar 

  8. Gallant, T., Experimental diesel particulate filter capabilities at PNNL / Proc. DEER Conf., Aug. 20–24, 2006, Chicago.

  9. Chen, K., Martirosyan, K.S., and Luss, D., Wrong-way behavior of soot combustion in a planar diesel particulate filter, Ind. Eng. Chem. Res., 2009, vol. 48, pp. 8451–8456.

    Article  Google Scholar 

  10. Chen, K., Martirosyan, K.S., and Luss, D., Hot zones formation during regeneration of diesel particulate filters, AIChE J., 2011, vol. 57, no. 2, pp. 497–506.

    Article  Google Scholar 

  11. Chen, K., Martirosyan, K.S., and Luss, D., Temperature gradients within a soot layer during DPF regeneration, Chem. Eng. Sci., 2011, vol. 66, pp. 2968–2973.

    Article  Google Scholar 

  12. Haralampous, O.A. and Koltsakis, G.C., Intra-layer temperature gradients during regeneration of diesel particulate filters, Chem. Eng. Sci., 2002, vol. 57, no. 13, pp. 2345–2355.

    Article  Google Scholar 

  13. Haralampous, O.A. and Koltsakis, G.C., Oxygen diffusion modeling in diesel particulate filter regeneration, AIChE J., 2004, vol. 50, no. 9, pp. 2008–2019.

    Article  Google Scholar 

  14. Bissett, E.J., Mathematical model of the thermal regeneration of a wall-flow monolith diesel particulate filter, Chem. Eng. Sci., 1984, vol. 8, no. 39, pp. 1233–1244.

    Article  Google Scholar 

  15. Pinjala, V., Chen, Y.C., and Luss, D., Wrong-way behavior of packed-bed reactors. II. Impact of thermal dispersion, AIChE J., 1988, vol. 34, pp. 1663–1672.

    Article  Google Scholar 

  16. Guo, Z. and Zhang, Z., Hybrid modeling and simulation of multidimensional processes for diesel particulate filter during loading and regeneration, Numer. Heat Transfer. Part A: Applications, 2007, vol. 51, no. 6, pp. 519–539.

    ADS  Article  Google Scholar 

  17. Fatehi, M. and Kaviany, M., Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion, Int. J. Heat Mass Transfer, 1997, vol. 11, p. 2607.

    Article  Google Scholar 

  18. Oliveira, A.A.M. and Kaviany, M., Nonequilibrium in the transport of heat and reactants in combustion in porous media, Progr. Energy Combustion Sci., 2001, vol. 27, p. 523.

    Article  Google Scholar 

  19. Pereira, F.M., Oliveira, A.A.M., and Fachini, F.F., Theoretical analysis of ultra-lean premixed flames in porous inert media, J. Fluid Mech., 2010, vol. 657, p. 285.

    ADS  MathSciNet  Article  Google Scholar 

  20. Fatehi, M. and Kaviany, M., Role of gas-phase reaction and gas-solid thermal nonequilibrium in reverse combustion, Int. J. Heat Mass Transfer, 1997, vol. 11, p. 2607.

    Article  Google Scholar 

  21. Delgado, J.M.P.Q., Longitudinal and transverse dispersion in porous media, Chem. Eng. Res. Des., 2007, vol. 85, p. 1245.

    Article  Google Scholar 

  22. Quintard, M. and Whitaker, S., Theoretical Analysis of Transport in Porous Media, New York: Marcel Dekker, 2000.

    Book  Google Scholar 

  23. Betelin, V.B., Galkin, V.A., Shpilman, A.V., and Smirnov, N.N., Digital core simulator – a promising method for developming hard-to-recover oil reserves technology, Materials Physics and Mechanics, Vol. 44, St. Petersburg: 2020, pp. 186–209.

  24. Markov, A.A., On thermal and mass dispersion effect on barium titanate synthesis via CCSO, Fiz. Khim. Kinet. Gas. Din., 2010, vol. 20, no. 4, p 1. http://chemphys.edu.ru/issues/2019-20-4/articles/870/, http://www.chemphys.edu.ru.

  25. Markov, A.A., Modeling the synthesis of barium titanate micron particles in axisymmetric direct-flow and three-zone reactors, J. Eng. Phys. Thermophys., 2021, vol. 94, no. 5, pp. 1312–1329.

    Article  Google Scholar 

  26. Sorokova, S.N. and Knyazeva, A.G., Coupled model of the sintering of powders of the Ti–TiAI3 system, Izv. Tomsk Politekhn. Inst., 2009, vol. 314, no. 2, p. 96.

    Google Scholar 

  27. Knyazeva, A.G., Vvedenie v termodinamiku neobratimykh protsessov (Introduction to Thermodynamics of Irreversible Processes), Tomsk: Ivan Fedorov, 2014.

  28. Trevino, C., Leo De, Dannangoda, G.C., Hobosyan, M.A., Held, J.T., Safi Samghabadi, F., Khodadadi, M., Litvinov, D., Mkhoyan, K.A., and Martirosyan, K.S., Carbon combustion synthesis of Janus-like particles of magnetoelectric cobalt ferrite and barium titanate, Ceramics Int., 2021, vol. 47, no. 4, pp. 5415–5422. https://doi.org/10.1016/j.ceramint.2020.10.123

    Article  Google Scholar 

  29. Markov, A.A., Effect of thermal and concentration expansion during barium titanate synthesis in a straight-flow reactor, Teor. Osnovy Khim. Tekhnol., 2021, vol. 55, no. 5, pp. 618–631.

    Google Scholar 

  30. Martirosyan, K.S. and Luss, D., Carbon combustion synthesis of oxides process demonstration and features, AIChE J., 2005, vol. 51, no. 10, p. 2801.

    Article  Google Scholar 

  31. Markov, A.A., Filimonov, I.A., and Martirosyan, K.S., Modeling the synthesis of multiple oxides of submicron dispersity, Teor. Osnovy Khim. Tekhnol., 2017, vol. 51, no. 1, p. 31.

    Google Scholar 

  32. Brzozowski, E., Sanchez, J., and Castro, M.S., BaCO3–TiO2 solid state reaction: A kinetic study, J. Materials Synthesis and Processing, 2002, vol. 10, no. 1, p. 1064.

    Article  Google Scholar 

  33. Beauger, A., Mutin, J.C., and Niepce, J.C., Synthesis reaction of metatitanate BaTiO3. Part 1: Effect of the gaseous atmosphere upon the thermal evolution of the system BaCO3–TiO2, J. Materials Sci., 1983, vol. 18, p. 3041.

    ADS  Article  Google Scholar 

  34. Markov A.A., Obosyan, M.A., and Martirosyan, K.S., Investigation of ferrite synthesis behind a combustion wave using the models of slip and jumps of temperature and components of the gas phase components on the surfaces of solid phase pores, Fiz. Khim. Kinet. Gas. Din., 2015, vol. 16, no 1. http://chemphys.edu.ru/issues/2015-16-1/articles/506/

  35. Frank-Kamenetskii, D.A., Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1987.

  36. Markov, A.A. and Filimonov, I.A., Nonstationary structures of spiral combustion on a surface, Fiz. Khim. Kinet. Gas. Din., 2021, vol. 22, no. 3. http://chemphys.edu.ru/issues/2021-22-3/articles/938/.

Download references

Funding

The study was carried out within the framework of the State Assignment no. АААА-А20-120011690135-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Markov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Lebedev

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Markov, A.A. Gasdynamic and Thermal Effects of the Synthesis of Micron-Sized Particles by the Carbon Combustion Method in Straight-Flow and Three-Zone Reactors. Fluid Dyn 57, 234–246 (2022). https://doi.org/10.1134/S0015462822030132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822030132

Keywords:

  • straight-flow and three-zone reactors
  • wrong-way behavior
  • synthesis of oxides
  • carbon combustion