Skip to main content
Log in

Localized Turbulent Structures in Long Pipe Flow with Minimal Set of Reflectional Symmetry

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The laminar-turbulent boundary (edge) separates trajectories approaching a turbulent attractor from those approaching a laminar one, at least for a finite time. To investigate the flow dynamics on the edge we carried out direct numerical simulations of transitional pipe flow (here at Reynolds number Re ∈ [2200, 2800]) in a long computational domain. The studied solution has the form of a structure localized in space and traveling downstream. Its qualitative characteristics are similar to the turbulent puffs observed experimentally in the transitional Reynolds number regime. The dynamics within the saddle region of the phase space on the separatrix (hyper-surface in pipe flow) appears to be chaotic. Here, we report such localized solutions on the edge/separatrix for pipe flow and investigate their correlation to turbulent puffs using a minimal set of (artificial) restrictions to the states, i.e., the mirror symmetry, and investigate the resulting flow behavior in this subspace. In contrast to higher symmetry restricted solutions, here detected solutions on the separatrix turn out to be quite as complex as the full state solutions. Worth emphasizing that any solutions found in the subspace are also solutions of the full space and therefore represent physical (symmetric) flow states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Meseguer, A. and Trefeten, L.N., Linearized pipe flow to Reynolds number 107, J. Comput. Phys., 2003, vol. 186, p. 178.

    Article  ADS  MathSciNet  Google Scholar 

  2. Reynolds, O., An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels, Phil. Trans. Roy. Soc. London. A, 1883, vol. 174, p. 935.

    Article  ADS  Google Scholar 

  3. Hof, B., Juel, A., and Mullin, T., Scaling of the threshold of pipe flow turbulence, Phys. Rev. Lett., 2003, vol. 91, p. 244502.

  4. Peixinho, J. and Mullin, T., Decay of turbulence in pipe flow, Phys. Rev. Lett., 2006, vol. 96, p. 094501.

  5. Wygnanski, I.J. and Champagne, F.H., On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug, J. Fluid Mech., 1973, vol. 59, p. 281.

    Article  ADS  Google Scholar 

  6. Wygnanski, I., Sokolov, J.M., and Friedman D., On transition in a pipe. Part 2. The equilibrium puff, J. Fluid Mech., 1975, vol. 69, p. 283.

    Article  ADS  Google Scholar 

  7. Barkley, D., Song, B., Mukund, V., Lemoult, G., Avila, M., and Hof, B., The rise of fully turbulent flow, Nature, 2015, vol. 526, pp. 550–553.

    Article  ADS  Google Scholar 

  8. Willis, A.P. and Kerswell, R.R., Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized “edge” states, J. Fluid Mech., 2009, vol. 619, pp. 213–233.

    Article  ADS  MathSciNet  Google Scholar 

  9. Nikitin, N.V., Transition problem and localized turbulent structures in pipes, Fluid Dyn., 2021, vol. 56, no. 1, pp. 31–44.

    Article  ADS  Google Scholar 

  10. Faisst, H. and Eckhardt, B., Traveling waves in pipe flow, Phys. Rev. Lett., 2003, vol. 91, p. 224502.

  11. Pringle, C.C.T. and Kerswell, R.R., Asymmetric, helical, and mirror-symmetric traveling waves in pipe flow, Phys. Rev. Lett., 2007, vol. 99, p. 074502.

  12. Mellibovsky, F. and Meseguer, A., Critical threshold in pipe flow transition, Phil. Trans. Roy. Soc. London. A, 2009, vol. 367, p. 545.

    ADS  MathSciNet  MATH  Google Scholar 

  13. Avila, M., Mellibovsky, F., Roland, N., and Hof, B., Streamwise-localized solutions at the onset of turbulence in pipe flow, Phys. Rev. Lett., 2013, vol. 110, p. 224502.

  14. Hof, B., van Doorne, C.W.H., Westerweel, J., Nieuwstadt, F.T.M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R.R., and Waleffe, F., Experimental observation of nonlinear traveling waves in turbulent pipe flow, Science, 2004, vol. 305, p. 1594.

    Article  ADS  Google Scholar 

  15. Hof, B., de Lozar, A., Kuik, D.J., and Westerweel, J., Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow, Phys. Rev. Lett., 2008, vol. 101, p. 214501.

  16. Gibson, J.F., Halcrow, J., and Cvitanovi’c, P., Visualizing the geometry of state space in plane Couette flow, J. Fluid Mech., 2008, vol. 611, pp. 107–130.

    Article  ADS  MathSciNet  Google Scholar 

  17. Itano, T. and Toh, S., The dynamics of bursting process in wall turbulence, J. Phys. Soc. Japan, 2001, vol. 70, pp. 703–716.

    Article  ADS  Google Scholar 

  18. Skufca, J.D., Yorke, J.A., and Eckhardt, B., Edge of chaos in a parallel shear flow, Phys. Rev. Lett., 2013, vol. 96, p. 174101.

  19. Avila, M., Willis, A.P., and Hof, B., On the transient nature of localized pipe flow turbulence, J. Fluid Mech., 2010, vol. 646, p. 127.

    Article  ADS  Google Scholar 

  20. Duguet, Y., Willis, A.P., and Kerswell, R.R., Transition in pipe flow: the saddle structure on the boundary of turbulence, J. Fluid Mech., 2008, vol. 613, pp. 255–274.

    Article  ADS  MathSciNet  Google Scholar 

  21. Schneider, T.M., Eckhardt, B., and Yorke, J.A., Turbulence transition and the edge of chaos in pipe flow, Phys. Rev. Lett., 2007, vol. 99, p. 034502.

  22. Schneider, T.M. and Eckhardt, B., Edge states intermediate between laminar and turbulent dynamics in pipe flow, Phil. Trans. Roy. Soc. London. A, 2008, vol. 367, pp. 577–587.

    ADS  MathSciNet  MATH  Google Scholar 

  23. Chantry, M. and Schneider, T.M., Studying edge geometry in transiently turbulent shear flows, J. Fluid Mech. 2014, vol. 747, pp. 506–517.

    Article  ADS  Google Scholar 

  24. De Lozar, A., Mellibovsky, F., Avila, M., and Hof, B., Edge state in pipe flow experiments, Phys. Rev. Lett., 2012, vol. 108, p. 214502.

  25. Beneitez, M., Duguet, Y., Schlatter, P., and Henningson, D.S., Edge tracking in spatially developing boundary layer flows, J. Fluid Mech., 2019, vol. 881, pp. 164–181.

    Article  ADS  MathSciNet  Google Scholar 

  26. Kerswell, R.R., Nonlinear nonmodal stability theory, Annu. Rev. Fluid Mech., 2018, vol. 50, pp. 319–345.

    Article  ADS  MathSciNet  Google Scholar 

  27. Rabin, S.M.E., Caulfield, C.P., and Kerswell, R.R., Triggering turbulence efficiently in plane Couette flow, J. Fluid Mech., 2012, vol. 712, pp. 244–272.

    Article  ADS  MathSciNet  Google Scholar 

  28. Willis, A.P., Cvitanovi’c, P., and Avila, M., Revealing the state space of turbulent pipe flow by symmetry reduction, J. Fluid Mech., 2013, vol. 721, p. 514.

    Article  ADS  MathSciNet  Google Scholar 

  29. Nikitin, N.V. and Pimanov, V.O., Numerical study of localized turbulent structures in a pipe, Fluid Dyn., 2015, vol. 50, no. 5, pp. 655–664.

    Article  ADS  MathSciNet  Google Scholar 

  30. Nikitin, N.V. and Pimanov, V.O., Sustainment of oscillations in localized turbulent structures in pipes, Fluid Dyn., 2018, vol. 53, no. 1, pp. 65–73.

    Article  ADS  MathSciNet  Google Scholar 

  31. Mellibovsky, F., Meseguer, A., Schneider, T., and Eckhardt, B., Transition in localized pipe flow turbulence, Phys. Rev. Lett., 2009, vol. 103, p. 054502.

  32. Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D., and Hof, B., The onset of turbulence in pipe flow, Science, 2011, vol. 333, p. 192.

    Article  ADS  Google Scholar 

  33. Willis, A.P. and Kerswell, R.R., Turbulent dynamics of pipe flow captured in a reduced model: puff relaminarization and localized “edge” states, J. Fluid Mech., 2009, vol. 619, p. 213.

    Article  ADS  MathSciNet  Google Scholar 

  34. Willis, A.P., The Openpipeflow Navier–Stokes solver, SoftwareX, 2017, vol. 6, pp. 124–127.

    Article  ADS  Google Scholar 

  35. Lebovitz, N.R., Boundary collapse in models of shear-flow transition, Commun. Nonlinear Sci. Numer. Simul., 2012, vol. 17, no. 5, pp. 2095–2100.

    Article  ADS  MathSciNet  Google Scholar 

  36. Chantry, M., Willis, A.P., and Kerswell, R.R., Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow, Phys. Rev. Lett., 2014, vol. 112, p. 164501.

  37. Eckhard, B., Turbulence transition in pipe flow: some open questions, Nonlinearity, 2007, vol. 21, no. 1, pp. 1–11.

    Article  ADS  MathSciNet  Google Scholar 

  38. Bandyopadhyay, P.R., Aspects of the equilibrium puff in transitional pipe-flow, J. Fluid Mech., 1986, vol. 163, p. 439.

    Article  ADS  Google Scholar 

Download references

Funding

Sebastian Altmeyer is a Serra Húnter Fellow. This work was supported by the Spanish Government grant no. PID2019-105162RB-I00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Altmeyer.

Ethics declarations

The authors declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altmeyer, S. Localized Turbulent Structures in Long Pipe Flow with Minimal Set of Reflectional Symmetry. Fluid Dyn 57, 211–219 (2022). https://doi.org/10.1134/S001546282202001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001546282202001X

Keywords:

Navigation