Skip to main content
Log in

Application of the Dorodnitsyn Transformation for Analysis of Heat and Mass Transfer in Rotating Flows

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A method based on the use of the Dorodnitsyn transformation is proposed for calculating the nonisothermal laminar boundary layers on a disk rotating in a gaseous medium. An approximate account for the nonlinear inertial terms is performed by the Slezkin–Targ method. It is demonstrated that, upon cooling the surface of the disk-end rotating slower than the external flow, it is possible not only to weaken the radial flow of a viscous heat-conducting gas, but also to change the direction of the flow velocity in the boundary layer to the opposite one. The possibilities of using the results to reduce the masking effect of the end elements in the experimental study of the stability of rotational flows as well as to control the circulation flows in closed systems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Grimble, T.A., Agarwal, A., and Juniper, M.P., Local linear stability analysis of cyclone separators, J. Fluid Mech., 2017, vol. 816, pp. 507–538.

    Article  ADS  MathSciNet  Google Scholar 

  2. Gorshkov, A.V. and Prosviryakov, E.Yu., Laminated Bernard–Marangoni convection with existence of thermal exchange in accordance with the Newton–Riemann low, Komp’yut. Issled. Model., 2016, vol. 8, no. 6, pp. 927–940.

    Google Scholar 

  3. Birikh, R.V. and Pukhnachev, V.V., An axial convective flow in a rotating tube with a longitudinal temperature gradient, Dokl. Phys., 2011, vol. 56, no. 1, pp. 47–52.

    Article  ADS  Google Scholar 

  4. Uranium Enrichment, Villani, S., Ed., Berlin: Springer, 1979.

    Google Scholar 

  5. Borisevich, V.D., Borman, V.D., Sulaberidze, G.A., Tikhomirov, A.V., and Tokmantsev, V.I., Fizicheskie osnovy razdeleniya izotopov v gazovoi tsentrifuge (Physical Backgrounds for Isotope Separation in a Gas Centrifuge), Moscow: Izd. dom MEI, 2011.

  6. Bogovalov, S.V., Borman, V.D., Borisevich, V.D., and Tronin, V.N., Dependence of the separative power of an optimized Iguassu gas centrifuge on the velocity of rotor, Int. J. Num. Methods Heat Fluid Flow, 2017, vol. 27, no. 7, pp. 1387–1394.

    Article  Google Scholar 

  7. Gorshunov, N.M. and Potanin, E.P., Use of high-frequency fields for centrifugal separation of spent nuclear fuel, Atom. Energy, 2018, vol. 124, pp. 197–202.

    Article  Google Scholar 

  8. Fetterman, A.J. and Fisch, N.J., Wave-driven countercurrent plasma centrifuge, Plasma Sources Sci. Technol., 2009, vol. 18, p. 045003.

  9. Mironova, M.V. and Kortikov, N.N., Conjugate heat transfer on a non-isothermal rotating disc, Thermophys. Aeromech., 2011, vol. 18, no. 4, pp. 573–578.

    Article  ADS  Google Scholar 

  10. Petrov, A.G., Mixing a viscous fluid in a layer between rotating eccentric cylinders, J. Appl. Math. Mech., 2008, vol. 72, no. 5, pp. 536–549.

    Article  MathSciNet  Google Scholar 

  11. Golubkin, V.N., Markov, V.V., and Sizykh, G.B., The integral invariant of the equations of motion of a viscous gas, J. Appl. Math. Mech., 2015, vol. 79, no. 6, pp. 566–571.

    Article  MathSciNet  Google Scholar 

  12. Potanin, E.P., Sosnin, L.Yu., and Chel’tsov, A.N., Determination of the circulation intensity in a centrifuge rotor in the enrichment of isotopic mixtures of heavy gases, At. Energy, 2019, vol. 127, pp. 153–158.

    Article  Google Scholar 

  13. Dorfman, L.A., Gidrodinamicheskoe soprotivlenie i teplootdacha vrashchayushchikhsya tel (Hydrodynamic Resistance and Heat Transfer of Rotating Bodies), Moscow: Fizmatgiz, 1960.

  14. Dorodnitsyn, A.A., Boundary layer in compressible gas, Prikl. Mat. Mekh., 1942, vol. 6, no. 6, pp. 449–486.

    MATH  Google Scholar 

  15. Potanin, E.P., Three-dimensional gas flow in a rotating cylinder with a retarding cover, Fluid Dyn., 2013, vol. 48, no. 1, pp. 68–76.

    Article  ADS  MathSciNet  Google Scholar 

  16. Borisevich, V.D., Potanin, E.P., and Whichello, J., Circulation control in MHD rotating flows, J. Fluid Mech., 2017, vol. 829, pp. 328–244.

    Article  ADS  MathSciNet  Google Scholar 

  17. Borisevich, V.D. and Potanin, E.P., Mechanically driven circulation in a rotating cylinder/disk device, Eur. J. Mech. B: Fluids, 2020, vol. 82, pp. 161–167.

    Article  ADS  MathSciNet  Google Scholar 

  18. Ram, P. and Kumar, V., Heat transfer in FHD boundary layer flow with temperature dependent viscosity over a rotating disk, Fluid Dyn. Mater. Process., 2014, vol. 10, no. 2, pp. 179–196.

    Google Scholar 

  19. Von Kármán, T., Über laminare und turbulente Reibung, Z. Angew. Math. Mech., 1921, vol. 1, pp. 233–252.

    Article  Google Scholar 

  20. Birikh, R.V., Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Tech. Phys., 1966, vol. 7, no. 3, pp. 43–44.

    Article  ADS  Google Scholar 

  21. Shidlovskiy, V.P., Laminar boundary layer on an infinite disc rotating in a gas, J. Appl. Math. Mech., 1960, vol. 24, no. 1, pp. 221–226.

    Article  MathSciNet  Google Scholar 

  22. Targ, S.M., Osnovnye zadachi teorii laminarnykh techenii (The Main Problems in the Theory of Laminar Flows), Leningrad: Gos. Izd. Fiz.-Mat. Lit., 1951.

  23. Timofeev, A.V., On the stability of the Sydem modes of an inhomogeneously rotating plasma, Fiz. Plazmy, 2010, vol. 36, no. 8, pp. 779–785.

    Google Scholar 

  24. Balbus, S.A. and Terquem, C., Linear analysis of the Hall effect in protostellar disks, Astrophys. J., 2001, vol. 552, pp. 235–247.

    Article  ADS  Google Scholar 

  25. Khalzov, I.V., Smolyakov, A.I., and Ilgisonis, V.I., Equilibrium magnetohydrodynamic flows of liquid metals in magnetorotational instability experiments, J. Fluid Mech., 2010, vol. 644, pp. 257–280.

    Article  ADS  MathSciNet  Google Scholar 

  26. Taylor, G.I., Stability of a viscous liquid contained between two rotating cylinders, Philos. Trans. R. Soc. London, Ser. A, 1923, vol. 223, pp. 289–343.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. D. Borisevich or E. P. Potanin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Oborin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisevich, V.D., Potanin, E.P. Application of the Dorodnitsyn Transformation for Analysis of Heat and Mass Transfer in Rotating Flows. Fluid Dyn 56, 1038–1048 (2021). https://doi.org/10.1134/S0015462821080036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821080036

Keywords:

Navigation