Skip to main content
Log in

Effect of Oil Viscosity on Hydraulic Cavitation Luminescence

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The collapse of cavitation bubbles in a hydraulic system generates localized zones of high temperature and pressure and, under certain conditions, luminescence. In this study, we studied the influence of the hydraulic oil viscosity on cavitation luminescence. We used a hydraulic cone-type throttle valve with antiwear hydraulic oils with kinematic viscosities of 32, 46, and 46 mm2/s at 40°C. Computational fluid dynamics was used to simulate the flow field of the cone-throttle valve under different viscosities. After constructing the visual experimental platform of hydraulic cavitation, we observed cavitation luminescence of the valve under three different hydraulic oil conditions. After the experiment, the viscosity index of the oil increased, the pour point decreased, and the flash point decreased. Thus, the viscosity–temperature characteristics and low-temperature fluidity improved and the safety decreased after luminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Q. D. Chen and L. Wang, “Luminescence from transient cavitation bubbles in water,” Phys. Letters A 339(1–2), 110–117 (2005).

  2. B. E. Noltingk and E. A. Neppiras, “Cavitation produced by ultrasonics,” Proc. Physics Society 63B, 674-685 (1950).

    Article  ADS  Google Scholar 

  3. Chen Weizhong and Xie Zhixing, “Multi-bubble and single-bubble sonoluminescence,” Progr. Physics Z1, 313–323 (1996).

    ADS  Google Scholar 

  4. W. C. Moss, D. B. Clarke, J. W. White, et al., “Sonoluminescence and the prospects for table-top micro-thermonuclear fusion,” Phys. Letters A 211, 69–74 1996.

    Article  ADS  Google Scholar 

  5. Xie Zhixing, Chen Weizhong, and Wei Rongjue, “Acoustic luminescence,” Physics 1, 25–31 (1998).

    Google Scholar 

  6. Kyuichi Yasui, “Effect of non-equilibrium evaporation and condensation on bubble dynamics near the sonoluminescence threshold,” Ultrasonics 36(1), 575–580 (1998).

    Article  Google Scholar 

  7. N. V. Dezhkunov, “Multibubble sonoluminescence intensity dependence on liquid temperature at different ultrasound intensities,” Ultrasonics Sonochemistry, 9(2), 103–106 (2002).

    Article  Google Scholar 

  8. M. Germano, A. Alippi, A. Bettucci, F. Brizi, and D. Passeri, “Water temperature dependence of single bubble sonoluminescence threshold,” Ultrasonics 50(1), 81–83 (2009).

    Article  Google Scholar 

  9. Li Tongbao, Ge Caoyan, Cheng Qian, et al., “Single bubble sonoluminescence,” J. Tongji Univ. (Natural Science Edition) 30(4), 504–509 (2002).

    Google Scholar 

  10. T. Levinsen Mogens, “Data collapse of the spectra of water-based stable single-bubble sonoluminescence,” Phys. Rev. E 82(3, Pt 2), 036323 (2011).

    Article  ADS  Google Scholar 

  11. G. L. Sharipov, L. R. Yakshembetova, and A. M. Abdrakhmanov, “The influence of the temperature of a liquid on multibubble sonoluminescence of Tb3+ ions in an aqueous solution,” Russian J. Phys. Chem. A 86(7), 1174–1176 (2012).

    Article  ADS  Google Scholar 

  12. Zhang Jian, “Research on cavitation thermal effect and noise of hydraulic conical throttle valve,” Harbin Institute of Technology, Dissertation (2014).

  13. C. Cairós et al., “Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions,” Ultrasonics Sonochemistry 21(6), 2044–2051 (2014).

    Article  Google Scholar 

  14. A. Thiemann et al., “Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid,” Ultrasonics Sonochemistry 34, 663–676 (2017).

    Article  Google Scholar 

  15. Zhang Jian, Jiang Jihai, Baiyunfeng, and Li Yanjie, “Simulation and test of pressure characteristics of conical throttle valves,” J. Huazhong Univ. of Science and Technology (Natural Science Edition) 43 (4), 64–68 (2015).

    ADS  Google Scholar 

  16. Jiao Junjie, He Yong, Pan Xuchao, He Yuan, and Wang Chuanting,”Analysis on the factors that influence bubble coalescence in an acoustic field,” Chinese J. Acoustics 35(01), 48–56 (2016).

    Google Scholar 

  17. M. Pishbini and R. Sadighi-Bonabi, “A new source of radiation in single-bubble sonoluminescence,” Pramana J. Physics 88(724), 72 (2017).

    Article  ADS  Google Scholar 

  18. A. Borisenok and A. B. Medvedev, “Calculation of thermodynamic parameters and degree of ionization of nitrogen and its mixtures with argon in typical single-bubble sonoluminescence conditions,” Physics of Atomic Nuclei 80(9), 1525–1531 (2017).

    Article  ADS  Google Scholar 

  19. Xiaojian Ma, Tianyu Xing, Biao Huang, Qiuhe Li, and Yifei Yang, “Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field,” Ultrasonics – Sonochemistry 40, 480–487 (2018).

    Article  Google Scholar 

  20. Wang Dexin and Naren Mandula, Theoretical study on acoustic cavitation characteristics of coupled double bubbles,” J. Physics 67(3), 231–238 (2018).

    Google Scholar 

  21. R. I. Nigmatulin, A. A. Aganin, and D. Y. Toporkov, “Possibility of cavitation bubble supercompression in tetradecane,” Doklady Physics 63(8), 348–352 (2018).

    Article  ADS  Google Scholar 

  22. A. A. Aganin, M. A. Il’gamov, R. I. Nigmatulin, and D. Yu. Toporkov, “Evolution of distortions of the spherical shape of a cavitation bubble in acoustic supercompression,” Fluid Dynamics 45(1), 50–61 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  23. R. I. Nigmatulin, R. T. Lahey Jr., R. P. Taleyarkhan, C. D. West, and R. C. Block, “On thermonuclear processes in cavitation bubbles,” Physics-Uspekhi 57(9), 877–890 (2014).

    Article  ADS  Google Scholar 

  24. O. E. Ivashnyov, M. N. Ivashneva, and N. N. Smirnov, “Slow waves of boiling under hot water depressurization,” J. Fluid Mech. 413, 149–180 (2000).

    Article  ADS  Google Scholar 

  25. O. E. Ivashnyov and N. N. Smirnov, “Thermal growth of a vapor bubble moving in a superheated liquid,” Fluid Dynamics 39(3), 414–428 (2004).

    Article  ADS  Google Scholar 

  26. O. E. Ivashnyov, M. N. Ivashneva, and N. N. Smirnov, “Rarefaction waves in nonequilibrium-boiling fluid flows,” Fluid Dynamics 35(4), 485–495 (2000).

    Article  ADS  Google Scholar 

  27. V. M. Chernyavskii and A. A. Monakhov, “Continuity violation during the motion of a contact line: new experimental and theoretical results,” Doklady Physics 55(8), 423–425 (2010).

    Article  ADS  Google Scholar 

  28. M. G. Rodio, M. G. De Giorgi, and A. Ficarella, “Influence of convective heat transfer modeling on the estimation of thermal effects in cryogenic cavitating flows,” Intern. J. Heat Mass Transfer 55, 6538–6554 (2012).

    Article  Google Scholar 

  29. N. N. Smirnov, V. B. Betelin, V. F. Nikitin, L. L. Stamov, and D. I. Altoukhov, “Accumulation of errors in numerical simulations of chemically reacting gas dynamics,” Acta Astronautica 117, 338–355 (2015).

    Article  ADS  Google Scholar 

  30. B. E. Launder and D. B. Spalding, “The numerical computation of turbulent flows,” Comput. Methods Appl. Mech. Eng. 269–289 (1990).

Download references

ACKNOWLEDGEMENTS

The authors wish to thank Adam Brotchie, PhD, from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This project was supported by the National Key Research and Development Program of China (Grant no. 2018YFB2001201), the National Natural Science Foundation of China (Grant no. 51805108), the China Postdoctoral Science Foundation (Grant no. 2019M661271), the Youth Innovative Talents Training Program of Regular Colleges and Universities in Heilongjiang Province, China in 2017 (Grant no. UNPYSCT-2017205), and the 111 Project (Grant no. B18017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Qi, N. & Jiang, J. Effect of Oil Viscosity on Hydraulic Cavitation Luminescence. Fluid Dyn 56, 371–382 (2021). https://doi.org/10.1134/S0015462821030125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821030125

Keywords:

Navigation