Skip to main content
Log in

Pressure Losses in Power-Law Fluid Flow through a Tube of Variable Cross-Section

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Steady laminar flow of an incompressible power-law fluid is a tube with an obstacle of given shape is numerically simulated. The mathematical description of the process is based on the vortex transport equation and the Poisson equation for the stream function, while the rheological properties of the medium are described by the Ostwald—de Waele power law. The steady solution of the problem is obtained using a time-dependent method based on the finite-difference approximation of the governing equations. The pressure distribution is determined by numerically solving the Poisson equation. A parametric investigation of the kinematic and dynamic flow parameters, as functions of the control parameters of the problem, is performed for non-Newtonian media. The effect of the Reynolds number, the nonlinearity exponent, and the obstacle geometry on the coefficient of the local fluid resistance is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. F. Young and F. Y. Tsai, “Flow characteristics in model of arterial stenosis. I. Steady flow,” J. Biomech. 6(4), 395–402 (1973).

    Article  Google Scholar 

  2. J. H. Forrester and D. F. Yang, “Flow through a converging-diverging tube and its implications in occlusive vascular disease-I,” J. Biomech. 3(3), 297–305 (1970).

    Article  Google Scholar 

  3. D. Liepsch, M. Singh, and M. Lee, “Experimental analysis of the influence of stenotic geometry on steady flow,” Biorheology 29(4), 419–431 (1992). https://www.scopus.com/authid/detail.uri?authorId=19535741000&eid=2-s2.0-0027093633

    Article  Google Scholar 

  4. M. D. Deshpande, D. P. Giddens, and R. F. Mabon, “Steady laminar flow through modelled vascular stenosis,” J. Biomech. 9(4), 165–174 (1976).

    Article  Google Scholar 

  5. J. S. Lee and Y. C. Fung, “Flow in locally constricted tubes at low Reynolds numbers,” J. Appl. Mech. 37(1), 9–16 (1970).

    Article  ADS  Google Scholar 

  6. T. S. Lee, “Steady laminar fluid flow through variable constrictions in vascular tubes,” J. Fluid Eng.-T ASME 116(1), 66–71 (1994).

    Article  Google Scholar 

  7. G. Pontrelli, “Blood flow through an axisymmetric stenosis,” P. I. Mech. Eng. H. 215(1), 1–10 (2001).

    Article  Google Scholar 

  8. M. K. Banerjee, D. Nag, R. Ganguly, and A. Datta, “Hemodynamics in stenosed arteries effects of stenosis shapes,” Int. J. Comp. Meth. 7(3), 397–419 (2010).

    Article  MathSciNet  Google Scholar 

  9. D. K. Mandal, N. K. Manna, and S. Chakrabarti, “Influence of different bell-shaped stenosis on the progression of the disease atherosclerosis,” J. Mech. Sci. Technol. 25(8), 1933–1947 (2011).

    Article  Google Scholar 

  10. T. S. Lee, W. Liao, and H. T. Low, “Numerical simulation of turbulent flow through series stenosis,” Int. J. Numer. Meth. Fl. 42(7), 717–740 (2003).

    Article  Google Scholar 

  11. H. Huang, T. S. Lee, and C. Shu, “Lattice-BGK simulation of steady flow through vascular tubes with double constrictions,” Int. J. Numer. Method. H. 16(2), 185–203 (2006).

    Article  Google Scholar 

  12. V. O’Brien, and L. W. Ehrlich, “I. Simple pulsatile flow in an artery with a constriction,” J. Biomech. 18(2), 117–127 (1985).

    Article  Google Scholar 

  13. C. Tu, M. Deville, L. Dheur, and L. Vanderschuren, “Finite element simulation of pulsatile flow through arterial stenosis,” J. Biomech. 25(10), 1141–1152 (1992).

    Article  Google Scholar 

  14. M. C. Paul and M. M. Molla, “Investigation of physiological pulsatile flow in a model arterial stenosis using large-eddy and direct numerical simulations,” Appl. Math. Mod. 36(9), 4393–4413 (2012).

    Article  MathSciNet  Google Scholar 

  15. V. A. Egorov, S. A. Regirer, and N. Kh. Shadrina, “Properties of pulsating blood flow through resistive blood vessels,” Fluid Dynamics 29(2), 221–226 (1994).

    Article  ADS  Google Scholar 

  16. A. Leuprecht and K. Perktold, “Computer simulation of non-Newtonian effects on blood flow in large arteries,” Comput. Method Biomech. 4(2), 149–163 (2001).

    Article  Google Scholar 

  17. W. Gao, R. Liu, and Y. Duan, “Numerical investigation on non-Newtonian flows through double constrictions by an unstructured finite volume method,” J. Hydrodyn. 21(5), 622–632 (2009).

    Article  ADS  Google Scholar 

  18. C. Tu and M. Deville, “Pulsatile flow of non-Newtonian fluids through arterial stenosis,” J. Biomech. 29(7), 899–908 (1996).

    Article  Google Scholar 

  19. S. Mukhopadhyay, M. S. Mandal, and S. Mukhopadhyay, “Effects of variable viscosity on pulsatile flow of blood in a tapered stenotic flexible artery,” Math. Method Appl. Sci. 42(2), 488–504 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Achab, “Numerical simulations of the pulsatile blood flow in narrowing small vessels using different rheological models,” J. Phys. Conf. Ser. 1294(2) (2019).

  21. I. A. Ryl’tsev, K. E. Ryl’tseva, and G. R. Schrager, “Kinematics of power-law fluid flow in a tube of variable cross-section,” Vestnik Tomsk Gos. Univ. Mat. Mekh. No. 63, 125–138 (2020).

    Google Scholar 

  22. H. Jung, J. W. Choi, and C. G. Park, “Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery,” Korea-Aust. Rheol. J. 16(2), 101–108 (2004).

    Google Scholar 

  23. P. J. Roache, Computational Fluid Dynamics (Hermosa, 1976).

    MATH  Google Scholar 

  24. W. Ostwald, “Ueber die rechnerische Darstellung des Strukturgebietes der Viskosität,” Kolloid Zeitschrift 47(2), 176–187 (1929).

    Article  Google Scholar 

  25. S. K. Godunov and V. S. Ryaben’kii, Introduction to Theory of Difference Schemes (Fizmatgiz, Moscow, 1962) [in Russian].

    Google Scholar 

  26. I. E. Idel’chik, Handbook on Fluid Resistance (Mashinostroenie, Moscow, 1992) [in Russian].

    Google Scholar 

  27. G. R. Zendehbudi and M. S. Moayeri, “Comparison of physiological and simple pulsatile flows through stenosed arteries,” J. Biomech. 32(9), 959–965 (1999).

    Article  Google Scholar 

Download references

Funding

The study is carried out with the financial support of the Russian Science Foundation (project 18-19-00021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Ryl’tsev.

Ethics declarations

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Translated by M. Lebedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzenko, E.I., Ryl’tsev, I.A. & Schrager, G.R. Pressure Losses in Power-Law Fluid Flow through a Tube of Variable Cross-Section. Fluid Dyn 56, 1–9 (2021). https://doi.org/10.1134/S001546282101002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001546282101002X

Keywords:

Navigation