Skip to main content
Log in

Vortex Stationary Karman Structures in Flows of a Rotating Incompressible Polymer Fluid

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The paper considers stationary solutions for the motion problem of a finite layer of an incompressible polymer fluid over an infinite rotating disk. An approximate stationary solution representation is used, similar to the self-similar Karman solution for a viscous fluid. Examples of stationary numerical solutions are given for various values of the problem’s parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Kuznetsova, Y.L. and Skul’skiy, O.I., Shear banding of the fluid with a nonmonotonic dependence of flow stress upon strain rate, Comput. Contin. Mech., 2018, vol. 11, no. 1, pp. 68–78.

    Article  Google Scholar 

  2. Liapidevskii, V.Yu., Pukhnachev, V.V., and Tani, A., Nonlinear waves in incompressible viscoelastic Maxwell medium, Wave Motion, 2011, vol. 48, no. 8, pp. 727–737.

    Article  MathSciNet  Google Scholar 

  3. Brutyan, M.A. and Krapivskii, P.L., On the effect of the reduction of the resistance in the micropolar fluid, J. Eng. Phys., 1989, vol. 57, pp. 213–219.

    Google Scholar 

  4. Blokhin, A.M. and Semenko, R.E., Vortex motion of an incompressible polymer liquid in the cylindrical near-axial zone, Fluid Dyn., 2018, vol. 53, no. 2, pp. 177–188.

    Article  MathSciNet  Google Scholar 

  5. Kuznetsov, A.E., Pyshnograi, G.V., and Cherpakova, N.A., The influence of the Weissenberg number on the structure of the polymer melts in the channels with instantaneous narrowing, Fundam. Probl. Sovrem. Materialoved., 2017, vol. 14, no. 3, pp. 332–336.

    Google Scholar 

  6. Molenaar, J. and Koopmans, R.J., Modeling polymer melt-flow instabilities, J. Rheol., 1994, vol. 38, no. 1, pp. 99–109.

    Article  ADS  Google Scholar 

  7. Brutyan, M.A. and Kulikovskii, A.G., Instability and nonuniqueness of quasisteady flows of a viscoelastic liquid, Fluid Dyn., 1996, vol. 31, no. 6, pp. 819–827.

    Article  ADS  MathSciNet  Google Scholar 

  8. Altukhov, Yu.A., Gusev, A.S., and Pyshnograi, G.V., Vvedenie v mezoskopicheskuyu teoriyu tekuchikh polimernykh system (Introduction into the Mesoscopic Theory of Liquid Polymeric Systems), Barnaul: Altai State Pedagogical Academy, 2012.

  9. von Karman, T., Über laminare und turbulente Reibung, Z. Angew. Math. Mech., 1921, vol. 1, no. 4, pp. 233–252.

    Article  Google Scholar 

  10. Stewartson, K., On rotating laminar boundary layers, Proc. Freiburg Symposium on Boundary Layer Research, Freiburg, 1957, pp. 59–71.

  11. Greenspan, H., The Theory of Rotating Fluids, Cambridge: Cambridge Univ. Press, 1968.

    MATH  Google Scholar 

  12. Rogers, M.H. and Lance, G.N., The boundary layer on a disc of finite radius in a rotating fluid, Q. J. Mech. Appl. Math., 1964, vol. 17, pp. 318–330.

    Article  MathSciNet  Google Scholar 

  13. Kostrykin, S.V., Khapaev, A.A., and Yakushkin, I.G., Vortex patterns in quasi-two-dimensional flows of a viscous rotating fluid, J. Exp. Theor. Phys.(JETP), 2011, vol. 112, no. 2, pp. 344–354.

    Article  ADS  Google Scholar 

  14. Kostrykin, S.V., Steady flow regimes in the problem of intense wind-driven circulation in a thin layer of viscous rotating fluid, J. Exp. Theor. Phys.(JETP), 2018, vol. 127, no. 1, pp. 167–177.

    Article  ADS  Google Scholar 

  15. Georgievskii, D.V. and Okulova, N.N., On the viscoplastic Karman flow, Moscow Univ. Mech. Bull., 2002, no. 5, pp. 45–49.

  16. Bambaeva, N.V. and Blokhin, A.M., Stationary solutions of equations of incompressible viscoelastic polymer liquid, Comput. Math. Math. Phys., 2014, vol. 54, no. 5, pp. 874–899.

    Article  MathSciNet  Google Scholar 

  17. Blokhin, A.M. and Semenko, R.E., Stationary electrohydrodynamic flows of incompressible polymeric media with strong discontinuity, J. Math. Sci. 2018, vol. 231, no. 2, pp. 143–152.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Blokhin or R. E. Semenko.

Additional information

Translated by L. Trubitsyna

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, A.M., Semenko, R.E. Vortex Stationary Karman Structures in Flows of a Rotating Incompressible Polymer Fluid. Fluid Dyn 55, 925–935 (2020). https://doi.org/10.1134/S0015462820070034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820070034

Keywords:

Navigation