Skip to main content
Log in

Transition to Turbulence through Intermittence in Inert and Reacting Jets

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

Subsonic flows of different gases in the near field of inert and reacting jets is experimentally investigated. The jets flowed out of long tubes, 2 to 8 mm in diameter, into an air medium at low Reynolds numbers from 400 to 5000. The working fluids were air, carbon dioxide, propane, and Freon-22 for inert isothermal jets and propane mixed with an inert dilution (СО2) for reacting jets. The tools included Hilbert visualization, PIV, thot-wire anemometry, and probe thermometry. A scenario of transition to turbulence through the intermittence mechanism in inert and reacting jets is revealed for the first time. It is realized in the Reynolds number range from 1900 to 3500, when laminar-turbulent transition occurs within the jet source, that is, the tube, in the absence of artificial disturbances. Turbulent spots generated in the tube in the transitional regime are statistical in nature and fairly stable in the jet near-field. Propagating downstream they can have a considerable effect on the dynamics of free jets and diffusion plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. N. Abramovich, Theory of Turbulent Jets (MIT Press, Cambridge, 1963).

    Google Scholar 

  2. O. I. Navoznov, A. A. Pavel’ev, and A. V. Yatsenko, “The transition to turbulence in submerged jets and wakes,” Fluid Dynamics 7(4), 672—678 (1972).

    Article  ADS  Google Scholar 

  3. C. M. Ho and P. Huerre, “Perturbed free shear layers,” Annu. Rev. Fluid Mech. 16, 356–424 (1984). https://doi.org/10.1146/annurev.fl.16.010184.002053

    Article  ADS  Google Scholar 

  4. A. Michalke, “Survey on jet instability theory,” Progr. Aerospace Sci. 21(3), 159–199 (1984). https://doi.org/10.1016/0376-0421(84)90005-8

    Article  ADS  Google Scholar 

  5. A. S. Ginevsky, Y. V. Vlasov, and R. K. Karavosov, Acoustic Control of Turbulent Jets (Springer-Verlag, Berlin, 2004). https://doi.org/10.1007/978-3-540-39914-8

    Book  Google Scholar 

  6. V. V. Kozlov, G. R. Grek, and Yu. A. Litvinenko, Visualization of Conventional and Combusting Subsonic Jet Instabilities (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-26958-0

  7. C. G. Ball, H. Fellouah, and A. Pollard, “The flow field in turbulent round free jets,” Progr. Aerospace. Sci. 50, 1–26 (2012). https://doi.org/10.1016/j.paerosci.2011.10.002

    Article  ADS  Google Scholar 

  8. I. V. Belyaev, O. P. Bychkov, M. Yu. Zaitsev, V. A. Kopiev, V. F. Kopiev, N. N. Ostrikov, G. A. Faranosov, and S. A. Chernyshev, “Development of the strategy of active control of instability waves in unexcited turbulent jets,” Fluid Dynamics 53(3), 347—360 (2018). https://doi.org/10.7868/S0568528118030027

    Article  MathSciNet  MATH  Google Scholar 

  9. A. F. Hussain and K. Zaman, “The preferred mode of the axisymmetric mode,” J. Fluid Mech. 110, 39–71 (1981). https://doi.org/10.1017/S0022112081000608

    Article  ADS  Google Scholar 

  10. G. Nathan, J. Mi, Z. Alwahabi, G. Newbold, and D. Nobes, “Impacts of a jet’s exit flow pattern on mixing and combustion performance,” Progr. Energy Combust. Sci. 32, 496–538 (2006). https://doi.org/10.1016/j.pecs.2006.07.002

    Article  Google Scholar 

  11. A. J. Reynolds, “Observations of a liquid-into-liquid jet,” J. Fluid Mech. 14, 552–556 (1962). https://doi.org/10.1017/S0022112062001433

    Article  ADS  MATH  Google Scholar 

  12. V. V. Lemanov, V. V. Terekhov, K. A. Sharov, and A. A. Shumeiko, “An experimental study of submerged jets at low Reynolds numbers,” Techn. Physics Lett. 39(5), 421—423 (2013). https://doi.org/10.1134/S1063785013050064

    Article  ADS  Google Scholar 

  13. Yu. S. Zaiko, A. I. Reshmin, S. Kh. Teplovodskii, and A. D. Chicherina, “Investigation of submerged jets with an extended initial laminar region,” Fluid Dyanmics 53(1), 95—104 (2018). https://doi.org/10.7868/S0568528118010103

    Article  MATH  Google Scholar 

  14. J. Zayko, S. Teplovodskii, A. Chicherina, V. Vedeneev, and A. Reshmin, “Formation of free round jets with long laminar regions at large Reynolds numbers,” Phys. Fluids 30, Art. No. 043603 (2018). https://doi.org/10.1063/1.5021017

    Article  ADS  Google Scholar 

  15. T. Mullin, “Experimental studies of transition to turbulence in a pipe,” Annu. Rev. Fluid Mech. 43, 1–24 (2011). https://doi.org/10.1146/annurev-fluid-122109-160652

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. K. Avila, D. Moxey, A. De Lozar, M. Avila, D. Barkley, and B. Hof, “The onset of turbulence in pipe flow,” Science 333, 192–196 (2011). https://doi.org/10.1126/science.1203223

    Article  ADS  MATH  Google Scholar 

  17. N. V. Nikitin and V. O. Pimanov, “Sustainment of oscillations in localized turbulent structures in pipes,” Fluid Dynamics 53(1), 65—73 (2018). https://doi.org/10.7868/S0568528118010073

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Takahashi, M. Mizomoto, and S. Ikai, “Transition from laminar to turbulent free jet diffusion flame,” Combustion Flame 48, 85–95 (1982). https://doi.org/10.1016/0010-2180(82)90117-1

    Article  Google Scholar 

  19. V. V. Lemanov, V. V. Lukashov, R. Kh. Abdrakhmanov, V. A. Arbuzov, Yu. N. Dubnishchev, and K. A. Sharov, “Regimes of unstable expansion and diffusion combustion in a hydrocarbon fuel jet,” Combustion, Explosion, Shock Waves 54(3), 255—263 (2018). https://doi.org/10.15372/FGV20180301

    Article  Google Scholar 

  20. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).

    Google Scholar 

  21. Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Flow Investigation (Novosibirsk Univ. Press, 2003) [in Russian].

    Google Scholar 

  22. Y. N. Dubnishchev, V. A. Arbuzov, V. V. Lukashov, K. A. Sharov, and V. V. Lemanov, “Optical Hilbert Diagnostics of Hydrogen Jet Burning,” Optoelectron. Instrument. Proc. 55(1), 16–19 (2019). https://doi.org/10.3103/S8756699019010035

    Article  ADS  Google Scholar 

  23. S. V. Alekseenko, A. V. Bilsky, V. M. Dulin, D. M. Markovich, “Experimental study of an impinging jet with different swirl rates,” Int. J. Heat Fluid Flow 7, 1340–1359 (2007). https://doi.org/10.1016/j.ijheatfluidflow.2007.05.011

    Article  Google Scholar 

  24. C. L. Kuan and T. Wang, “Investigation of the intermittent behavior of transitional boundary layer using a conditional averaging technique,” Exp. Therm. Fluid Sci. 3(2), 157–173 (1990). https://doi.org/10.1016/0894-1777(90)90084-K

    Article  ADS  Google Scholar 

  25. V. Lemanov, V. Lukashov, K. Sharov, and D. Nezavitin, “Turbulent spots in the flame of a diffusion torch,” J. Phys.: Conf. Ser. 1382, Art. No. 012058 (2019). https://doi.org/10.1088/1742-6596/1382/1/0120

    Article  Google Scholar 

Download references

Funding

The study is carried out within the framework of the State Assessment of the Institute of Thermophysics of the Siberian Branch of the Russian Academy of Sciences АААА-А17-117030310010-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lemanov.

Ethics declarations

The Authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Translated by M. Lebedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemanov, V.V., Lukashov, V.V. & Sharov, K.A. Transition to Turbulence through Intermittence in Inert and Reacting Jets. Fluid Dyn 55, 768–777 (2020). https://doi.org/10.1134/S0015462820060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820060087

Keywords:

Navigation