Skip to main content
Log in

Experimental Investigation of the Hypersonic Boundary Layer Transition on a 45° Swept Flat Plate

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

In this paper, the experimental study on the transition process of a boundary layer on a 45° swept flat plate is performed in the Mach 6.0 hypersonic low-noise wind tunnel. The instantaneous fine structures of the boundary layer on the swept flat plate in streamwise and spanwise planes have been investigated based on the Nano-tracer Planar Laser Scattering (NPLS) technique, respectively. The spatiotemporal evolution characteristics of the boundary layer translating from laminar to turbulence are analyzed. The transition process from laminar to turbulent flow is shown, and its spatiotemporal evolution characteristics are analyzed. It is found that the transitional plane is parallel to the leading edge of the 45° swept flat plate under the unit Reynolds number of 1.67 × 107 m–1. The distance from the turbulent zone to the leading edge of the swept flat plate is 18.9R. The laminar strip is at an angle of 9° to the streamwise plane. Using Temperature-Sensitive Paints (TSP) technique, the temperature gradient distribution on the surface of the 45° swept flat plate wall was obtained, and the boundary layer transition regular pattern obtained by temperature gradient was agree with the coherent structures obtained from the NPLS images. Compared the TSP result with the NPLS images, the correlation between flow structure and wall temperature gradient was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. X. L. Liu, S. H. Yi, H. B. Niu, and X. G. Lu, “Influence of laser-generated perturbations on hypersonic boundary-layer stability,” Acta Phys. Sin. 67(2018).

  2. X. L. Zhong, “Direct numerical simulation of 3-D hypersonic boundary layer receptivity to freestream disturbances,” The 36th AIAA Aerospace Sciences Meeting and Exhibit, ed: American Institute of Aeronautics and Astronautics, 1998.

  3. M. V. Morkovin, E. Reshotko, and T. Herbert, “Transition in open flow systems: a reassessment,” Bull. APS, 39, 31 (1994).

  4. Y. J. Wu, X. Ming, “Experimental Study of Initial Disturbance Growth for Cross Flow Instability,” ACTA Aerodynamica Sinica, vol. 18, 2000.

    Google Scholar 

  5. S. X. Li, J. K. Ma, and X. G. Guo, “Experimental Study of Hypersonic Interaction Flow Induced by High Sweep Fin Model,” Physics of Gases, vol. 1, 2016.

  6. K. F. Stetson,E. R. Thompson, J. C. Donaldson, and L. G. Siler, “Laminar boundary layer stability experiments on a cone at Mach 8,” Part 1:Sharp cone[C]. AIAA Paper 83-1761, 1983.

  7. K. F. Stetson,E. R. Thompson, J. C. Donaldson, L. G. Siler, “Laminar boundary layer stability experiments on a cone at Mach 8,” Part 2:Blunt Cone[C]. AIAA Paper 84-0006, 1984.

  8. S. J. Kline, W. C. Reynolds, F. A. Schranb, P. W. Runstadler, “The structure of turbulent boundary layer,” Journal of Fluid Mechanics 30(4), 741–774 (1967).

  9. T. Theodorsen. 1952 Mechanism of turbulence. In: Proceedings of the second Midwestern conference on fluid mechanics. Ohio State University, USA.

  10. M. R. Head, P. R. Bandyopadhyay, “New aspects of turbulent boundary-layer structure,” J. Fluid Mech,1981,107:297-338.

    Article  ADS  Google Scholar 

  11. M. L. Baumgartner, P. J. Erbland, M. R. Etz, A. Yalin, B. K. Muzas, A. J. Smits, W. R. Lempert, R. B. Miles, “Structure of a Mach 8 Turbulent Boundary Layer,” in 35th Aerospace Sciences Meeting & Exhibit Reno, NV 1997.

  12. M. P. Martin. “Direct numerical simulation of hypersonic turbulent boundary layers. Part 1. Initialization and comparison with experiments,” J. Fluid Mech,2007,570:347-364.

    Article  ADS  Google Scholar 

  13. X. L. Li, D. X. Fu, Y. W. Ma. “Assessment of the compressible turbulence model by using the DNS data,” Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2).

  14. M. W. Smith and A. J. Smits, “Visualization of the structure of supersonic turbulent boundary layers,” Experiments in Fluids, 18, 288-302, 1995.

    Article  ADS  Google Scholar 

  15. M. W. Smith, A. J. Smits, R. B. Miles, “Cinematic visualization of coherent density structures in a supersonic turbulent boundary layer,” 1988 Opt. Lett. 14 916.

    Article  ADS  Google Scholar 

  16. P. M. Danehy, J. A. Wilkes, D. W. Alderfer, S. B. Jones, A. Robbins, D. Patry, R. Schwartz. “Planar laser-induced fluorescence (PLIF) investigation of hypersonic flow fields in a Mach 10 wind tunnel,” 2006 AIAA Paper 2006-3442.

  17. B. F. Bathel, P. M. Danehy, J. A. Inman, A. David, B. Scott. “PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing,” 2008 AIAA Paper 2008-4266.

  18. L. He, S. H. Yi, L. F. Tian, Z. Chen, Y. Z. Zhu. “Simultaneous density and velocity measurements in a supersonic turbulent boundary layer,” Chin.Phys, 2013, 2: 328-334.

    Google Scholar 

  19. Y. Z. Zhu, S. H. Yi, Z. Chen, Y. Ge, X. H. Wang, J. Fu. “Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection,” Acta Phys. Sin,2013,8:259-266.

    Google Scholar 

  20. Z. Chen, S. H. Yi, L. He, L. F. Tian, Y. Z. Zhu. “An experimental study on fine structures of supersonic laminar/turbulent flow over a backward-facing step based on NPLS,” 2011 Chinese Science Bulletin 57 584.

    Article  ADS  Google Scholar 

  21. L. He, S. H. Yi, X. G. Lu, “Experimental study on the density characteristics of a supersonic turbulent boundary layer,” 2017 Acta Phys. Sin. 66 July(2017).

  22. L. He, S. H. Yi, Y. X. Zhao, L. F. Tian, Z. Chen. “Visualization of coherent structures in a supersonic flat-plate boundary layer,” 2011 Chinese Science Bulletin 54 1702.

  23. L. He, S. H. Yi, Y. X. Zhao, L. F. Tian, Z. Chen. “Experimental study of a supersonic turbulent boundary layer using PIV.” 2011 Chinese Science Bulletin 56 489.

    Article  ADS  Google Scholar 

  24. L. He. 2006 M. S. Dissertation (Changsha: National University of Defense Technology) (in Chinese).

  25. Y. X. Zhao, S. H. Yi, L. F. Tian, and Z. Y. Cheng, “Supersonic Flow Imaging via Nanoparticles,” Sci. China, Ser. E 52, 3640 (2009).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the National Project for Research and Development of Major Scientific Instruments of China, project no. 11527802 and the Major Research Plan of the National Natural Science Foundation of China, project no. 91752102 and Excellent innovation Young Project of Changsha, project KQ1802031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoge Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Yi, S., He, L. et al. Experimental Investigation of the Hypersonic Boundary Layer Transition on a 45° Swept Flat Plate. Fluid Dyn 55, 111–120 (2020). https://doi.org/10.1134/S0015462820010085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462820010085

Key words:

Navigation