Skip to main content
Log in

On Functional Formulation of the Statistical Theory of Homogeneous Turbulence and the Method of Sceleton Feynman Diagrams

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The paper reviews the application of the formalism of a characteristic functional for statistical description of a random velocity field obeying the Navier-Stokes equation for incompressible fluids in the presence of regular and random external forces. The equation in functional derivatives for the characteristic functional is obtained using a representation of the characteristic functional in the form of a functional integral over two fields. From this equation one can obtain equations for various statistical characteristics of the velocity field such as the variance of velocity pulsations (the pair correlation function) or the mean response of velocity field to external forces (Green’s function). The method of skeleton Feynman diagrams is used in the analysis of the equations and of the solution structures. This fact follows directly from the functional formulation of the theory without referring to the commonly used methods of perturbation theory. The vertices of three types arising in the theory formulation appear to be linked. This enables considering the vertex of only one type and simplify the diagrammatic representations of various quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics, vol. 1: Mechanics of Turbulence, Cambridge: MIT Press, 1971.

    Google Scholar 

  2. Gelfand, I.M. and Yaglom, A.M., Integration in functional spaces and its application in quantum physics, Adv. Math. Sci., 1956, vol. 11, no. 1 (67), pp. 67–114.

    Google Scholar 

  3. Kolmogorov, A.N., Transformation de Laplace dans les espace lineaares, Compt. Rend. Acad. Sci. (Paris), 1935, vol. 200, pp. 1717–1718.

    Google Scholar 

  4. Bogolyubuv, N.N., Problems of Dynamical Theory in Statistical Physics, Moscow; Leningrad: Gos. Izd. Tekhniko-Tekhnich. Lit., 1946.

    Google Scholar 

  5. Schwinger, J., Quantum electrodynamics. II Vacuum polarization and self-energy, Phys. Rev., 1949, vol. 75, no. 4, pp. 651–679.

    Article  ADS  MathSciNet  Google Scholar 

  6. Schwinger, J., On the Green’s functions of quantized fields. Part 1, Proc. Nat. Acad. Sci., USA, 1951, vol. 37, pp. 452–455.

    Article  ADS  Google Scholar 

  7. Gelfand, I.M. and Minlos, R.A., Solutions to the equations of quantized fields, Dokl. Akad. Nauk SSSR, 1954, vol. 97, no. 2, pp. 209–212.

    Google Scholar 

  8. Edwards, S.F. and Peierls, R.E., Field equations in functional form, Proc. R. Soc, 1954, vol. 224, no. 1156, pp. 452–455.

    MathSciNet  MATH  Google Scholar 

  9. Hopf, E., Statistical hydrodynamics and functional calculus, J. Rat. Mech. Anal, 1952, vol. 1, pp. 87–123.

    MATH  Google Scholar 

  10. Lewis, R.M. and Kraichnan, R.H., A space-time functional formalism for turbulence, Commun. Pure Appl. Math., 1962, vol. 15, pp. 397–411.

    Article  MathSciNet  Google Scholar 

  11. Klyatskin, V.I., Space-time description of stationary and homogeneous turbulence, Fluid Dyn., 1971, vol. 6, no. 4, pp. 655–661.

    Article  ADS  MathSciNet  Google Scholar 

  12. Wyld, H.W., Formulation of the theory of turbulence in an incompressible fluid, Ann. Phys. (New York), 1961, vol. 14, pp. 143–165.

    Article  ADS  MathSciNet  Google Scholar 

  13. Novikov, E.A., Random force method in turbulence theory, Sov. Phys. JEPT, 1963, vol. 17, no. 6, pp. 1449–1454.

    MathSciNet  MATH  Google Scholar 

  14. Gledzer, E.B. and Monin, A.S., The method of diagrams in perturbation theory, Russ. Math. Surv., 1974, vol. 29, no. 3, pp. 1609–1613.

    Article  MathSciNet  Google Scholar 

  15. Lee, L.L., Formulation of the theory of isotropic hydrodynamic turbulence in an incompressible fluid, Ann. Phys. (New York), 1965, vol. 32, no. 22, pp. 292–321.

    Article  ADS  Google Scholar 

  16. Martin, P.C., Siggia, E.D., and Rose, H.A., Statistical dynamics of classical systems, Phys. Rev. A, 1973, vol. 8, no. 1, pp. 423–437.

    Article  ADS  Google Scholar 

  17. Bogolyubov, N.N. and Shirkov, D.V., Introduction to the Theory of Quantiezed Fields, New York: Interscience, 1959.

    MATH  Google Scholar 

  18. Teodorovich, E.V., Applications of the methods of the field theory and the renormalization group to a description of fully developed turbulence, Adv. Mech., 1990, vol. 13, no. 1, pp. 81–121.

    MathSciNet  Google Scholar 

  19. Tatarsky, V.I., Application of quantum field theory methods to the problem of degeneration of homogeneous turbulence, Sov. Phys. JEPT, 1962, vol. 15, no. 5, pp. 961–967.

    MathSciNet  Google Scholar 

  20. Teodorovich, E.V., Diagram equations of the theory of fully developed turbulence, Theor. Math. Phys., 1994, vol. 101, no. 1, pp. 1177–1183.

    MathSciNet  MATH  Google Scholar 

  21. Teodorovich, E.V., Comment on small-scale intermittence, Phys. Rev. E, 1995, vol. 52, no. 2, p. 1385.

    Article  MathSciNet  Google Scholar 

  22. Teodorovich, E.V., On one possibility of closuring the chain of equations for statistical moments in turbulence theory, Int. J. Mod. Phys. A, 2013, vol. 4, no. 1, pp. 6–63.

    MathSciNet  Google Scholar 

  23. Millionshchikov, M.D., On the theory of isotropic turbulence, Dokl. Akad. Nauk SSSR, 1941, vol. 2, no. 9, pp. 611–614.

    Google Scholar 

  24. Kraichnan, R.H., The structure of isotropic turbulence at very high reynolds numbers, J. Fluid Mech., 1959, vol. 5, no. 4, pp. 497–543.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The work is supported by the State Task, project no. AAAA-A17-117021310375-7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Teodorovich.

Additional information

Russian Text © The Author(s), 2019, published in Prikladnaya Matematika i Mekhanika, 2019, Vol. 83, No. 5–6, pp. 790–807.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teodorovich, E.V. On Functional Formulation of the Statistical Theory of Homogeneous Turbulence and the Method of Sceleton Feynman Diagrams. Fluid Dyn 54, 1059–1072 (2019). https://doi.org/10.1134/S0015462819080068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819080068

Keywords

Navigation