Skip to main content
Log in

Isolated Convection Modes for the Anomalous Thermoviscous Liquid in a Plane Cell

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

This work is devoted to the numerical research of free convection by a Newtonian anomalous thermoviscous fluid in a flat cell. The cell is heated from below, cooled from above; and the lateral boundaries are heat insulated. The viscosity anomaly of the fluid is modeled by the Gaussian function of temperature and is characterized by two parameters. A flow regime with isolated convective cells separated by a region of high viscosity, the so-called viscous barrier, was detected at a certain set of control parameters. For these flow regimes, current lines, heat fluxes, temperature fields, and contours of the components of the velocity vector of the fluid are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Palm, E., On the tendency towards hexagonal cells in steady convection, J. Fluid Mech., 1960, vol. 8, pp. 183–192.

    Article  ADS  Google Scholar 

  2. Cordon, R.P. and Velarde, MG., On the (non linear) foundations of boussinesq approximation applicable to a thin layer of fluid, J. Phys. France, 1975, vol. 36, pp. 591–601.

    Article  ADS  Google Scholar 

  3. Kutateladze, S.S. and Berdnikov, VS., Structure of thermogravitational convection in flat variously oriented layers of liquid and on a vertical wall, Int. J. Heat Mass Transfer, 1984, vol. 27, pp. 1595–1611.

    Article  Google Scholar 

  4. Gebhart, B., Jaluria, Y., Mahajan, RL., and Sammakia, B., Buoyancy-Induced Flows and Transport, New York: Hemisphere, 1988.

    MATH  Google Scholar 

  5. Chavanne, X., Chilla, F., Chabaud, B., Castaing, B., and Hebral, B., Turbulent Rayleigh–Benard convection in gaseous and liquid He, Phys. Fluids, 2001, vol. 13, pp. 1300–1320.

    Article  ADS  Google Scholar 

  6. Arcidiacono, S., Piazza, ID., and Ciofalo, M., Low-Prandtl number natural convection in volumetrically heated rectangular enclosures II. Square cavity, AR = 1, Int. J. Heat Mass Transfer, 2001, vol. 44, pp. 537–550.

    Article  Google Scholar 

  7. Fleischer, A.S. and Goldstein, R.J., High-Rayleigh-number convection of pressurized gases in a horizontal en-closure, J. Fluid Mech., 2002, vol. 469, pp. 1–12.

    Article  ADS  Google Scholar 

  8. Hartlep, T., Tilgner, A., and Busse, FH., Large scale structures in Rayleigh-Benard convection at high Rayleigh numbers, Phys. Rev. Lett., 2003, vol. 91, pp. 1–4.

    Article  Google Scholar 

  9. Amati, G., Koal, K., Massaioli, F., Sreenivasan, K., and Verzicco, R., Turbulent thermal convection at high Rayleigh numbers for a Boussinesq fluid of constant Prandtl number, Phys. Fluids, 2005, vol. 17, pp. 1–4.

    Article  Google Scholar 

  10. Niemela, J.J. and Sreenivasan, KR., Turbulent convection at high Rayleigh numbers and aspect ratio 4, J. Fluid Mech., 2006, vol. 557, pp. 411–422.

    Article  ADS  Google Scholar 

  11. Palymskii, IB., Numerical simulation of two-dimensional convection: role of boundary conditions, Fluid Dyn., 2007, vol. 42, pp. 550–559.

    Article  ADS  Google Scholar 

  12. Andreev, V.K., Gaponenko, Yu.A., Goncharova, ON., and Pukhnachev, V.V., Mathematical Models of Convection, Berlin: De Gruyter, 2012.

    Book  Google Scholar 

  13. Turan, O., Lai, J., Poole, RJ., and Chakraborty, N., Laminar natural convection of power-law fluids in a square enclosure submitted from below to a uniform heat flux density, J. Non-Newtonian Fluid Mech., 2013, vol. 199, pp. 80–95.

    Article  Google Scholar 

  14. Kang, G.U., Chung, BJ., and Kim, HJ., Natural convection heat transfer on a vertical cylinder submerged in fluids having high Prandtl number, Int. J. Heat Mass Transfer, 2014, vol. 79, pp. 4–11.

    Article  Google Scholar 

  15. Park, Y., Ha, M., and Park, J., Natural convection in a square enclosure with four circular cylinders positioned at different rectangular locations, Int. J. Heat Mass Transfer, 2015, vol. 81, pp. 490–511.

    Article  Google Scholar 

  16. Leibenzon, LS., On the motion of a heated viscous fluid, Azerb. Neft. Khoz., 1922, vol. 2, pp. 60–66.

    Google Scholar 

  17. Kutateladze, S.S., Borishanskii, V.M., Novikov, II., and Fedynskii, O.S., Zhidkometallicheskie teplonositeli (Liquid-Metal Coolants), Moscow: Atomizdat, 1967.

    Google Scholar 

  18. Bacon, R.F. and Fanelli, R., The viscosity of sulfur, J. Am. Chem. Soc., 1943, vol. 65, pp. 639–648.

    Article  Google Scholar 

  19. Frenkel, J., Kinetic Theory of Liquids, Mineola: Dover Publ., 1984.

    MATH  Google Scholar 

  20. Wilson, S.K. and Duffy, BR., On the gravity-driven draining of a rivulet of fluid with temperature-dependent viscosity down a uniformly heated or cooled substrate, J. Eng. Math., 2002, vol. 42, pp. 359–372.

    Article  MathSciNet  Google Scholar 

  21. Likhachev, ER., Dependence of water viscosity on temperature and pressure, Techn. Phys., 2003, vol. 48, pp. 514–515.

    Article  ADS  Google Scholar 

  22. Graham, A., Shear patterns in an unstable layer of air, Phil. Trans. Roy. Soc. London A, 1934, vol. 232, pp. 285–296.

    Article  ADS  Google Scholar 

  23. Tippelskirch, H., Über konvektionszellen insbesondere im flüssigen schwefel, Beitr. Phys. Atmos., 1956, vol. 29, pp. 37–54.

    Google Scholar 

  24. Urmancheev, S.F. and Kireev, VN., Steady flow of a fluid with an anomalous temperature dependence of viscosity, Dokl. Phys., 2004, vol. 49, pp. 328–331.

    Article  ADS  Google Scholar 

  25. Urmancheev, S.F. and Kireev, VN., On the effect of temperature dependence of viscosity on the flow of a fluid, Oil Gas Bus., 2004, no. 2, pp. 287–295.

    Google Scholar 

  26. Il’yasov, A.M., Moiseev, KV., and Urmancheev, SF., Numerical simulation of liquid thermal convection with quadratic relationship between viscosity and temperature, Sib. Zh. Industr. Mat., 2005, vol. 8, no. 4, pp. 51–59.

    MATH  Google Scholar 

  27. Moiseeva, E.F., Malyshev, V.L., Moiseev, KV., and Urmancheev, SF., The influence of the way of heating on the picture of flow during Rayleigh-Bernard convection, Sci. J. Ufa State Aviat. Techn. Univ., 2011, vol. 15, no. 4, pp. 154–158.

    Google Scholar 

  28. Kuleshov, V.S. and Moiseev, KV., Numerical simulation of convection anomalous thermoviscous flow, Sci. J. Ufa State Aviat. Techn. Univ., 2016, vol. 20, no. 2, pp. 74–80.

    Google Scholar 

  29. Kuleshov, V.S., Moiseev, KV., and Urmancheev, SF., Periodic structures in natural convection of anomalous thermoviscous liquid, Vestn. Bashk. Univ., 2017, vol. 22, no. 2, pp. 297–302.

    Google Scholar 

  30. Kuleshov, V.S., Moiseev, K.V., Khizbullina, S.F., Mikhailenko, KI., and Urmancheev, SF., Convective flows of anomalous thermoviscous fluid, Math. Mod. Comput. Simul., 2017, vol. 10, pp. 529–537.

    Article  Google Scholar 

  31. Moiseev, K., Volkova, E., and Urmancheev, S., Effect of convection on polymerase chain reaction in a closed cell, Proc. IUTAM, 2013, vol. 8, pp. 172–175.

    Article  Google Scholar 

  32. Moiseev, K.V., Khizbullina, S.F., Bakhtizin, R.N., Urmancheev, S.F., Kuleshov, VS., and Alferov, AV., To the analysis of mathematical models of stratification processes in inhomogeneous flow, Oil Gas Bus., 2017, vol. 15, no. 2, pp. 165–170.

    Google Scholar 

  33. Malyshev, V.L., Marin, D.F., Moiseeva, E.F., Gumerov, NA., and Akhatov, I.Sh., Study of the tensile strength of a liquid by molecular dynamics methods, High Temp., 2015, vol. 53, pp. 406–412.

    Article  Google Scholar 

  34. Malyshev, V.L., Marin, D.F., Moiseeva, EF., and Gumerov, NA., Influence of gas on the rupture strength of liquid: simulation by the molecular dynamics methods, High Temp., 2016, vol. 54, pp. 607–611.

    Article  Google Scholar 

  35. Gershuni, G.Z. and Zhukhovitskii, E.M., Convective Stability of Incompressible Fluids, Jerusalem: Keter Publ. House, 1976.

    Google Scholar 

  36. Patankar, S., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere, 1980.

    MATH  Google Scholar 

  37. Ouertatani, N., Cheikh, N.B., Beya, BB., and Lili, T., Numerical simulation of two-dimensional Rayleigh-Bénard convection in an enclosure, Comptes Rendus Mécan., 2008, vol. 336, pp. 464–470.

    Article  ADS  Google Scholar 

  38. Kimura, S. and Bejan, A., The “heatline” visualization of convective heat transfer, J. Heat Transfer, 1983, vol. 105, no. 4, pp. 916–919.

    Article  Google Scholar 

Download references

Funding

This study was supported partially by the Russian Foundation for Basic Research, project no. 17-41-020576-r_a and partially by state task financing, no. 0246-2019-0052.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Kuleshov, K. V. Moiseev or S. F. Urmancheev.

Additional information

Russian Text © The Author(s), 2019, published in Prikladnaya Matematika i Mekhanika, 2019, Vol. 83, No. 3, pp. 484–494.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuleshov, V.S., Moiseev, K.V. & Urmancheev, S.F. Isolated Convection Modes for the Anomalous Thermoviscous Liquid in a Plane Cell. Fluid Dyn 54, 983–990 (2019). https://doi.org/10.1134/S0015462819070097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819070097

Keywords

Navigation