Skip to main content
Log in

Global Stability Analysis of Spatially Developing Boundary Layer: Effect of Streamwise Pressure Gradients

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The paper presents a global stability analysis of the two-dimensional incompressible boundary layer with the effect of streamwise pressure gradient. A symmetric wedge flow is considered at different values of the dimensionless pressure gradient parameter βH. The pressure gradient dp/dx in the flow direction is zero, when βH = 0, favorable (negative) for βH > 0, and adverse (positive) for βH < 0. The base flow is computed by numerical solution of Falkner—Skan equation. The Reynolds number is based on the displacement thickness δ* at the inflow boundary. The stability equations governing the flow are derived in body-fitted coordinates. The stability equations are discretized using the Chebyshev spectral collocation method. The discretized equations, together with boundary conditions, form a general eigenvalue problem and are solved using Arnoldi’s algorithm. The temporal global modes are computed for βH = 0.022, 0.044, and 0.066, for favorable and adverse pressure gradients. The temporal growth rate ωi is found to be negative for all the global modes. The ωi value is smaller for the favorable pressure gradient (FPG) than for the adverse pressure gradient (APG) at the same Reynolds number (Re = 340). Thus, the FPG has a stabilizing effect on the boundary layer. The comparison of the spatial eigenmodes and spatial amplification rates for FPG and APG show that FPG has a stabilizing effect, whereas APG has a destabilizing effect on the disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Obremski, M. V. Morkovin, and M. Landahl, “A portfolio of stability characteristics of incompressible boundary layer,” AGARDograph 134 (1969).

  2. E. R. Van Driest and C. B. Blumer, “Boundary layer transition: freestream turbulence and pressure gradient effect,” AIAA J. 1, 1303–1306 (1963).

    Article  ADS  Google Scholar 

  3. S. K. Saxena and T. K. Bose, “Numerical study of effect of pressure gradient on stability of an incompressible boundary layer,” Phys. Fluids 17, 1910–1912 (1974).

    Article  ADS  Google Scholar 

  4. T. C. Corke and S. Gruber, “Resonant growth of three-dimensional modes in Falkner-Skan boundary layers with adverse pressure gradient,” J. Fluid Mech. 320, 211–233 (1996).

    Article  ADS  Google Scholar 

  5. C. Liu and S. A. Maslowe, “A numerical investigation of resonant interactions in adverse pressure gradient boundary layers,” J. Fluid Mech. 378, 269–289 (1999).

    Article  ADS  Google Scholar 

  6. B. J. Abu-Ghannam and R. Shaw, “Natural transition of boundary layers- the effects of turbulence, pressure gradient, and flow history,” J. Mech. Engng. Sci. 22, 213–228 (1980).

    Article  Google Scholar 

  7. J. P. Gostelow, A. R. Blunden, and G. J. Walker, “Effect of free-stream turbulence and adverse pressure gradients on boundary layer transition,” J. Turbomach. 116, 392–404 (1994).

    Article  Google Scholar 

  8. N. Vinod and R. Govindarajan, “Pattern of breakdown of laminar flow into turbulent spots,” Phys. Rev. Lett. 93, 114501 (2004).

    Article  ADS  Google Scholar 

  9. N. Vinod and R. Govindarajan, “The signature of laminar instabilities in the zone of transition to turbulence,” J. Turbulence 8(2), (2007).

    Google Scholar 

  10. R. Narasimha, “The laminar-turbulent transition zone in the boundary layer,” Progr. Aero. Sci. 22, 29–80 (1985).

    Article  Google Scholar 

  11. A. Seifert and H.P. Hodson, “Periodic turbulent strips and calmed regions in a transitional boundary layer,” AIAA J. 37, 1127–1129 (1999).

    Article  ADS  Google Scholar 

  12. S. A. Maslowe and R. J. Spiteri, “The continuous spectrum for a boundary layer in a streamwise pressure gradient,” Phys. Fluids 13, 1294 (2001).

    Article  ADS  Google Scholar 

  13. Y. H. Zurigat, A. H. Nayfeh, and J. A. Masad, “Effect of pressure gradient on the stability of compressible boundary layers,” AIAA J. 30, 2204–2211 (1992).

    Article  ADS  Google Scholar 

  14. K. J. Franko and S. Lele, “Effect of adverse pressure gradient on high speed boundary layer transition,” Phys. Fluids 26, 24106 (2014).

    Article  Google Scholar 

  15. W. Zhang, H. Yang, D. Hua-Shu, and Z. Zuchao, “Flow unsteadiness and stability characterstics of low-Re flow past an inclined triangular cylinder,” J. Fluids Eng. 139, 121203 (2017).

    Article  Google Scholar 

  16. R. L. Kimmel, “The effect of pressure gradients on transition zone length in hypersonic boundary layer,” Flight Dynamics Directorate (1993).

  17. N. Itoh, “Effect of pressure gradients on the stability of three-dimensional boundary layers,” Fluid Dynamic Research 7, 37–50 (1991).

    Article  ADS  Google Scholar 

  18. M. W. Johnson and A. Pinarbasi, “The effect of pressure gradients on boundary layer receptivity,” Flow, Turbulence and Combustion 93, 1–24 (2014).

    Article  Google Scholar 

  19. J. A. Masad and Y. H. Zurigat, “The effect of pressure gradients on first mode of instability in compressible boundary layer,” Phys. Fluids 6, 3945 (1994).

    Article  ADS  Google Scholar 

  20. A. Tumin and D. E. Ashpis, “Optimal dsturbances in boundary layers subject to streamwise pressure gradient,” 33rd AIAA Fluid Dynamics Conf. (2003).

  21. J. P. Gostelow and A. R. Blunden, “Investigation of boundary layer transition in an adverse pressure gradient,” ASME J. Turbomachinery 111, 366–374 (1989).

    Article  Google Scholar 

  22. S. Igarashi, H. Sasaki, and M. Honda, “Influence of pressure gradient upon boundary layer stability and transition,” Acta Mechanica 73, 187–198 (1988).

    Article  Google Scholar 

  23. R. Govindarajan and R. Narasimha, “Stability of spatially developing boundary layers in pressure gradients,” J. Fluid Mech. 300, 117–147 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  24. G.J. Walker and J. P. Gostelow, “Effect of adverse pressure gradients on the nature and length of boundary layer transtion,” Gas Turbines and Aeroengine Congress and Exposition (1989).

  25. L. Chonghui, “A numercal investigation of instability and transition in adverse pressure gradient boundary layers,” Ph.D. Thesis, McGill University, Montreal (1997).

    Google Scholar 

  26. P Corbett and A. Bottaro, “Optimal perturbations for boundary layers subject to streamwise pressure gradient,” Phys. Fluids 12, 120–131 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  27. F. Alizard and J. C. Robinet, “Spatially convective global modes in a boundary layer,” Phys. Fluids 19, 114105 (2007).

    Article  ADS  Google Scholar 

  28. U. Ehrenstein and F. Gallaire, “On two-dimensional temporal modes in spatially evolving open flow: the flat-plate boundary layer,” J. Fluid Mech. 536, 209–218 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  29. E. Akervik, U. Ehrenstein, F. Gallaire, and D. S. Henningson, “Global two-dimensional stability measure of the flat plate boundary-layer flow,” Eur. J. Mech. B/Fluids 27, 501–513 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  30. R. Bhoraniya and N. Vinod, “Global stability analysis of axisymmetric boundary layer over a circualr cylinder,” Theor. Comput. Fluid Dyn. 32, 425–449 (2018).

    Article  MathSciNet  Google Scholar 

  31. R. Bhoraniya and N. Vinod, “Global stability analysis of axisymmetric boundary layer over a circular cone,” J. Phys.: Conf. Ser. 822, 012018 (2017).

    Google Scholar 

  32. R. Bhoraniya and N. Vinod, “Global stability analysis of axisymmetric boundary layer over a circular cone,” Phys. Rev. Fluids 02, 063901 (2017).

    Article  ADS  Google Scholar 

  33. V. Theofilis, “Advances in global linear instability analysis of nonparallel and three-dimensional flows,” Progr. Aerospace Sci. 39, 249–315 (2003).

    Article  ADS  Google Scholar 

  34. H. Fasel, U. Rist, and U. Konzelmann, “Numerical investigation of the three-dimensional development in boundary layer transition,” AIAA J 28, 29–37 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  35. G. Swaminathan, Kirti. Shahu, A. Sameen, and R. Govindarajan, “Global instabilities in diverging channel flows,” Theor. Comput. Fluid Dyn. 25, 53–64 (2011).

    Article  Google Scholar 

  36. M. R. Malik, “Numerical methods for hypersonic boundary layer stability,” J. Comput. Phys. 86(2), 376–412 (1990).

    Article  ADS  Google Scholar 

  37. B. Costa, W. S. Don, and A. Simas, “Spatial resolution properties of mapped spectral Chebyshev methods,” Proceedings of SCPDE, 179–188 (2007).

  38. L. M. Mach, “A numerical study of temporal eigenvalue spectrum of the Blasius boundary layer.” J. Fluid Mech. 73, 497–520 (1976).

    Article  ADS  Google Scholar 

  39. D. Sipp and D. Lebedev, “Global stability of base and mean flows: a general approach to its applications to cylinder and open cavity flow,” J. Fluid Mech. 593, 333–358 (2007).

    Article  ADS  Google Scholar 

  40. O. Marquet, D. Sipp, and D. Lebedev, “Sensitivity analysis and passive control of cylinder flow,” J. Fluid Mech. 615, 221–252 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  41. J. W. Nichols and S. K. Lele, “Global modes and transient response of a cold supersonic jet,” J. Fluid Mech. 669, 225–241 (2011).

    Article  ADS  Google Scholar 

  42. X. Garnaud, L. Lesshafft, P. J. Schimd, and P. Huerre, “Modal and transient dynamics of jet flows,” Phys. Fluids. 25, 044103 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Bhoraniya.

Ethics declarations

The Author declares no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2019, No. 6, pp. 84–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoraniya, R., Narayanan, V. Global Stability Analysis of Spatially Developing Boundary Layer: Effect of Streamwise Pressure Gradients. Fluid Dyn 54, 821–834 (2019). https://doi.org/10.1134/S0015462819060028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819060028

Keywords

Navigation