Skip to main content
Log in

Heat Transfer Enhancement of Pulsating Flow in an Open Cavity Subjected to Uniform Magnetic Field

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The present numerical work is devoted to the effect of an external magnetic field on a pulsating flow through an open cavity in a horizontal channel. The cavity is heated uniformly from the bottom wall. The finite volume method is used to solve the energy and Navier—Stokes equations. At the inlet of the channel flow pulsations are produced by adding a sinusoidal component to the velocity. The investigation is conducted for different Strouhal (0 ≤ St ≤1), Richardson (0.25 ≤ Ri ≤1), and Hartmann numbers (0 ≤ Ha ≤50) and for various aspect ratios of the cavity (L/H = 1, 1.5, and 2) at a pulsation amplitude A = 0.1. Various characteristics of the flow, such as isotherms, streamlines, and average and normalized Nusselt numbers are presented. The results indicate that the influence of the external magnetic field on the temperature distribution, flow field, heat transfer mode, and heat transfer enhancement rate vary with the Hartmann number. The effect of pulsations on the heat transfer enhancement is well correlated with the magnetic field intensity, Richardson number, and aspect ratio of the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Amplitude of pulsation

B 0 :

Magnetic field magnitude

c p :

Specific heat (J/kg K)

f :

Pulsation frequency (Hz)

g :

Gravitational acceleration (m/s2)

Gr :

Grashof number, gβ(THTC)H3/v3

h :

Coefficient of heat transfer (W/m2 K)

H :

Height of the cavity (m)

Ha :

Hartmann number, \({B_0}H\sqrt {{{\rm{\sigma }} \over {\rm{\mu }}}} \)

k :

Thermal conductivity (W/mK)

l :

Length of the channel (m)

L :

Length of the cavity (m)

u 0 :

Velocity at the entrance (m/s)

U, V :

Non-dimensional velocity, u/u0, v/u0

x, y :

Coordinates (m)

X, Y :

Non-dimensional coordinates, x/H, y/H Greek symbols

α:

Thermal diffusivity (m2/s)

β:

Coefficient of thermal expansion (1/K)

ε:

Dynamic viscosity (kg/ms)

ν:

Kinematic viscosity (m2/s)

ρ:

Density (kg/m3)

θ:

Non-dimensional temperature, (T − TC)/(THTC)

ψ:

Non-dimensional stream function

References

  1. H. F. Öztop, K. Al-Salem, and I. Pop, “MHD mixed convection in a lid-driven cavity with corner heater,” Intern. J. Heat Mass Transfer 54, 3494–3504 (2011).

    Article  MATH  Google Scholar 

  2. S. E. Ahmed, M. A Mansour, and A. Mahdy, “MHD mixed convection in an inclined lid-driven cavity with opposing thermal buoyancy force: effect of non-uniform heating on both side walls,” Nuclear Eng. Design 265, 938–948 (2013).

    Article  Google Scholar 

  3. G. Kefayati, M. Bandpy, H. Sajjadi, and D. D. Ganji, “Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall,” Scientia Iranica B 19, 1053–1065 (2012).

    Article  Google Scholar 

  4. K. M. Shirvan, H. F. Öztop, and K. Al-Salem, “Mixed magnetohydrodynamic convection in a cu-water nanofluid-filled ventilated square cavity using the taguchi method: a numerical investigation and optimization,” Europ. Phys. J. Plus. 132, 204 (2017).

    Article  ADS  Google Scholar 

  5. H. F. Öztop, A. Sakhriehb, E. Abu-Nadad, and K. Al-Salem, “Mixed convection of MHD flow in nanofluid filled and partially heated wavy walled lid-driven enclosure,” Intern. Comm. Heat Mass Transfer 86, 42–51 (2017).

    Article  Google Scholar 

  6. N. S. Gibanov, M. A. Sheremet, H. F. Öztop, and N. Abu-Hamdeh, “Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid.” Intern. J. Heat Mass Transfer 114, 1086–1097 (2017).

    Article  Google Scholar 

  7. F. Berrahil, S. Benissaad, A. Chérifa, and M. Médale, “Natural convection with volumetric heat generation and external magnetic field in differentially heated enclosure,” Proc. IMechE Part C: J. Mech. Eng. Sci. 228 (15), 2711–2727 (2014).

    Article  Google Scholar 

  8. K. M. Gangawane and R. P. Bharti, “Computational analysis of magneto-hydrodynamic natural convection in partially differentially heated cavity: effect of cooler size,” Proc. IMechE Part C: J. Mech. Eng. Sci. 232 (3), 515–528 (2018).

    Article  Google Scholar 

  9. M. Sheikholeslami and S. A. Shehzad, “CVFEM for influence of external magnetic source on Fe3O4-H2O nanofluid behavior in a permeable cavity considering shape effect,” Intern. J. Heat Mass Transfer 115, 180–191 (2017).

    Article  Google Scholar 

  10. M. Sheikholeslami and H. B. Rokni, “Nanofluid convective heat transfer intensification in a porous circular cylinder,” Chem. Eng. Processing: Process Intensification 120, 93–104 (2017).

    Article  Google Scholar 

  11. Z. Mehrez and A. El Cafsi, “Thermodynamic analysis of Al2O3-water nanofluid flow in an open cavity under pulsating inlet condition,” Int. J. Appl. Comput. Math. DOI (2017). https://doi.org/10.1007/s40819-017-0366-9

  12. M. M. Rahman, S. Parvin, R. Saidur, and N. A. Rahim, “Magnetohydrodynamic mixed convection in a horizontal channel with an open cavity,” Intern. Comm. Heat Mass Transfer 38, 184–193 (2011).

    Article  Google Scholar 

  13. M. M. Rahman, R. Saidur, and N. A. Rahim, “Conjugated effect of joule heating and magneto-hydrodynamic on double-diffusive mixed convection in a horizontal channel with an open cavity,” Intern. J. Heat Mass Transfer 54, 3201–3213 (2011).

    Article  MATH  Google Scholar 

  14. M. M. Rahman, H. F. Öztop, R. Saidur, S. Mekhilef, and K. Al-Salem, “Finite element solution of MHD mixed convection in a channel with a fully or partially heated cavity,” Computers Fluids 79, 53–64 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  15. Z. Mehrez, A. El Cafsi, A. Belghith, and P. Le Quéré, “MHD effects on heat transfer and entropy generation of nanofluid flow in an open cavity,” J. Magnetism Magnetic Materials 374, 214–224 (2015).

    Article  ADS  Google Scholar 

  16. S. Hussain, S. E. Ahmed, and T. Akbar, “Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle,” Intern. J. Heat Mass Transfer 114, 1054–1066 (2017).

    Article  Google Scholar 

  17. F. Selimefendigil and H. F. Öztop, “Pulsating nanofluids jet impingement cooling of a heated horizontal surface,” Intern. J. Heat Mass Transfer 69, 54–65 (2014).

    Article  Google Scholar 

  18. F. Selimefendigil and H. F. Öztop, “Identification of forced convection in pulsating flow at a backward facing step with a stationary cylinder subjected to nanofluid,” Intern. Comm. Heat Mass Transfer 45, 111–121 (2013).

    Article  Google Scholar 

  19. F. Zamzari, Z. Mehrez, A. El Cafsi, A. Belghith, and P. Le Quéré, “Numerical investigation of entropy generation and heat transfer of pulsating flow in a horizontal channel with an open cavity,” J. Hydrodynamics 29, 632–646 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Zamzari or Z. Mehrez.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2019, No. 3, pp. 138–149.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamzari, F., Mehrez, Z. & El Cafsi, A. Heat Transfer Enhancement of Pulsating Flow in an Open Cavity Subjected to Uniform Magnetic Field. Fluid Dyn 54, 428–438 (2019). https://doi.org/10.1134/S0015462819020149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819020149

Keywords

Navigation