Skip to main content
Log in

Flow Characteristics in Coaxial Channels with Three Helical Fins of Annular Gap

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The helical coordinate system is used for mathematical description of laminar viscous fluid flows in channels with three helical fins of annular gap. The mathematical model in which the equations of motion are written in projection on the directions of natural basis of the helical coordinate system is suggested. The distributions of flow characteristics in channels with long triple screw inserts of various geometry are analyzed on the basis of the numerical results obtained for the Reynolds numbers up to 806.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergles, A.E., Jensen, M.K., Somerscales, E.F.C., and Manglik, R.M., Literature Review of Heat Transfer Enhancement Technology for Heat Exchanges in Gas-Fired Applications, Report GRI 91-0146, Chicago, Gas Research Institute, 1991.

    Google Scholar 

  2. Kalinin, E.K., Dreitser, G.A., and Yarkho, S.A., Intensifikatsiya teploobmena v kanalakh (Heat-Exchange Enhancement in Channels), 3rd ed., Moscow: Mashinostroenie, 1990.

    Google Scholar 

  3. Kovalenko, L.M. and Glushkov, A.F., Teploobmenniki s intensifikatsiei teplootdachi (Heat-Exchanger with Enhancement of Heat Emission), Moscow: Energoatomizdat, 1986.

    Google Scholar 

  4. Webb, R.L., Principles of Enhanced Heat Transfer, New York: Wiley, 1994.

    Google Scholar 

  5. Gortyshov, Yu.F., Teplogidrodynamicheskaya effektivnost’ perpektivnykh sposobov intensifikatsii teplootdachi v kanalakh teploobmennogo oborudovaniya. Intensifikatsiya teploobmena (Thermohydrodynamic Efficiency of Prospective Methods of Heat Emission Enhancement in the Channels of Heat-Exchange Devices. Heat-Exchange Enhancement), Kazan: Tsentr Innovatsionnykh Tekhnologii, 2009.

    Google Scholar 

  6. Popov, I.A., Makhayanov, Kh.M., and Gureev, V.M., Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena. Intensifikatsiya teploobmena: Monografiya (Physical Fundamentals and Industrial Applications of Heat-Exchange Enhancement. Heat-Exchange Enhancement: a Monograph), Gortyshov, Yu.F., Ed., Kazan: Tsentr Innovatsionnykh Tekhnologii, 2009.

  7. Dewan, A., Mahanta, P., Sumithra, K.R., and Kumar, S.P., Review of passive heat transfer augmentation techniques, Proc. Instn Mech. Engrs. Part A: J. Power and Energy, 2004, vol. 218, pp. 509–527.

    Article  Google Scholar 

  8. Wen-Tao, J., Jacobi, A.M., Ya-Ling He, Wen-Quan Tao, Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow, Intern. J. Heat and Mass Transfer, 2015, no. 88, pp. 735–754.

  9. Bipin, K., Gaurav, P.S., Manoj, K., and Anil, K.P., A review of heat transfer and fluid flow mechanism in heat exchanger tube with inserts, Chemical Engineering & Processing: Process Intensification, 2018, no. 123, pp. 126–137.

  10. Mitrofanova, O.V., Hydrodynamics and heat exchange of swirled flows in channels with swirlers (An analytical review), Teplofiz. Vysokh. Temperatur, 2003. vol. 41, no. 4, pp. 587–633.

    MathSciNet  Google Scholar 

  11. Nazmeev, Yu.G., Gidrodinamika i teploobmen zakruchennykh potokov reologicheski slozhnykh zhidkostei (Hydrodynamics and Heat Exchange of Swirled Flows of Complex Rheological Fluids), Moscow: Energoatomizdat, 1996.

    Google Scholar 

  12. Nazmeev, Yu.G. and Konakhina, I.A., Calculation of the velocity profile in nonlinear viscoelastic fluid flow in pipes with helical knurl, Inzh.-Fiz. Zhurn., 1992. vol. 62, no. 3, pp. 373–379.

    Google Scholar 

  13. Nazmeev, Yu.G. and Konakhina, I.A., Investigation of the process of heat-exchange enhancement in laminar viscous fluid flows in pipes with helical knurl, Teploenergetika, 1993, no. 11, 59–62.

  14. Nazmeev, Yu.G. and Konakhina, I.A., Organizatsiya energotekhnologicheskikh kompleksov v neftekhimicheskoi promyshlennosti (Organization of Energy-Technological Complexes in Oil-Chemistry Industry), Moscow: Izdvo MEI, 2001.

    Google Scholar 

  15. Vachagina, E.K. and Kadyirov, A.I., The use of helical coordinate systems, The Quarterly J. Mech. Appl. Mathematics, 2014. vol. 67, no. 4, pp. 553–566.

    Article  MathSciNet  MATH  Google Scholar 

  16. Komov, A.T. and Tokarev, Yu.N., Numerical analysis of swirled laminar incompressible fluid flows in Cartesian-helical coordinates, in Fourth Ross. Nat. Conf. on Heat Exchange, October 23–27, Moscow, 2006.

  17. Kadyirov, A.I., Abaydullin, B.R., and Vachagina, E.K., Hydrodynamic characteristics of viscous fluid flow in screw channels formed by two ribs, in IOP Conf. Series: J. Phys.: Conf. Ser., 2018. vol. 980, p. 012011. https://doi.org/10.1088/1742-6596/980/1/012011

    Article  Google Scholar 

  18. Kadyirov, A.I., Khalitova, G.R., and Vachagina, E.K., Hydrodynamic structure of viscous fluid flow in channels with intensifiers in the form of a helical insert, Tr. Akademenergo, 2016, no. 3, pp. 7–16.

  19. Shchukin, V.K. and Khalatov, A.A., Teploobmen, massoobmen i gidrodinamika zakruchennykh potokov v osesimmetruchnykh kanalakh (Heat Exchange, Mass Transfer and Hydrodynamics of Swirled Flows in Axisymmetric Channels), Moscow: Mashinostroenie, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Vachagina.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2019, No. 3, pp. 28–37.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vachagina, E.K., Kadyirov, A.I., Konakhina, I.A. et al. Flow Characteristics in Coaxial Channels with Three Helical Fins of Annular Gap. Fluid Dyn 54, 319–328 (2019). https://doi.org/10.1134/S0015462819020125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819020125

Key words

Navigation