Skip to main content
Log in

Simulation and Calculation of Time-dependent Filtration of a Suspension in Dead-end and Open Channels with Regard to Dispersed Particles Diffusion and Deposit Formation

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The model of filtration of a suspension in a channel is constructed within the framework of the diffusive approximation with regard to disperse component diffusion and deposit formation. The system of equations is reduced to the convective diffusion equation in integro-differential form. The equation obtained is integrated numerically. The constitutive parameters of the problem considered are established. Certain calculation results which illustrate the effect of the diffusive particle fluxes and the constitutive parameters on suspension dynamics in the channel are discussed. The behavior of mean filtrate flow as a function of time is analyzed for various values of the constitutive parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuzhikov, V.A., Fil’trovanie. Teoriya i praktika razdeleniya suspensii (Filtration. Theory and Practice of Suspension Separation), Moscow: Khimiya, 1971.

    Google Scholar 

  2. Coussy, O., Poromechanics, Chichester: Wiley, 2004.

    MATH  Google Scholar 

  3. Shekhtman, Yu.M., Fil’tratsiya malokontsentrirovannykh suspensii (Filtration of Low-Concentration Suspensions), Moscow: Izd-vo AN SSSR, 1961.

    Google Scholar 

  4. Ershin, Sh.A., Gidroaerodinamika (Hydroaerodynamics), Almaty: Izd-vo Kaz.NU im. Al’-Farabi, 2013.

    Google Scholar 

  5. Leont’ev, N.E., Exact solutions to the problem of deep-bed filtration with retardation of a jump in concentration within the framework of the nonlinear two-velocity model, Fluid Dynamics, 2017, vol. 52, no. 1, pp. 165–170. https://doi.org/10.7868/S0568528117010108

    Article  MathSciNet  MATH  Google Scholar 

  6. Dimov, S.V., Kuznetsov, V.V., Rudyak, V.Ya., and Tropin, N.M., Experimental investigation of microsuspension filtration in a highly-permeable porous medium, Fluid Dynamics, 2012, vol. 47, no. 2, pp. 178–185.

    Article  ADS  MATH  Google Scholar 

  7. Akhmadiev, F.G., Ibyatov, R.I., and Kiyamov Kh.G., Mathematical simulation of the process of suspension separation in a drum-type vacuum-filter with coming-off working belt, Teoret. Osnovy Khim. Tekhnologii, 1998, vol. 32, no. 2. pp. 188–194.

    Google Scholar 

  8. Davydova, E.B., Sredstva i modeli membrannoi microfiltratsii promyshlennykh zhidkikh sred v avtomatizorovannykh tekhnologigeskich kompleksakh (Tools and Models of Membrane Microfiltration of Industrial Liquid Media in Automated Technological Complexes), Author’s abstract of PhD dissertation, Speciality code 05.13.06, Vladimir: 2013.

  9. Davydova, E.B., Il’in, M.I., and Tarasov, A.V., Simulation of the time-dependent process of suspension filtration in a dead-end channel, Teoret. Osnovy Khim. Tekhnologii, 2013, vol. 47, no. 3, pp. 352–354. https://doi.org/10.7868/S0040357113030032

    Google Scholar 

  10. Dytnerskii, Yu.I., Obratnyi osmos i ul’trafil’tratsiya (Reversed Osmosis and Ultrafiltration), Moscow: Khimiya, 1978.

    Google Scholar 

  11. Polyakov Yu.S., Ul’tra i mikrofil’tratsiya v polovolokonnykh apparatakh s obrazovaniem osadka na poverkhnosti membran (Ultra- and Micro-Filtration in Hollow-Fiber Devices with Deposit Formation on the Membrane Surface), Thesis for Cand. Tekh. Nauk, Speciality code 05.17.08, Moscow: 2004.

  12. Il’in, M.I., Fedotov, Yu.A., Yamanov, Yu.I., and Tarasov, A.V., Membrannyi fil’truyushchii modul’ (Membrane Filtrating Unit), Patent No. 2194566 C1 Ru. 2002.

  13. Asmolov, E.S., Lebedeva, N.A, and Osiptsov, A.A., Inertial migration of sedimenting particles in a suspension flow through a Hele-Shaw cell, Fluid Dynamics, 2009, vol. 44, no. 3. pp. 405–418.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Jackson, R., The Dynamics of Fluidized Particles, Cambridge: Cambridge University Press, 2000.

    MATH  Google Scholar 

  15. Hammond, P.S., Settling and slumping in a Newtonian slurry, and implications for proppant placement during hydraulic fracturing of gas wells, Chem. Eng. Sci., 1995, vol. 50, no. 20, pp. 3247–3260.

    Article  Google Scholar 

  16. Mikhailov, N.N., Izmenenie fizicheskikh cvoistv gornykh porod v okoloskvazhinnykh zonakh (Change in the Physical Properties of Rocks in Near-Well Zones), Moscow: Nedra, 1987.

    Google Scholar 

  17. Ivannikov, V.I., Kucherenko, E.I., and Mikhlin L.P., Analytical investigation of the process of drilling mud flow from a well to a reservoir, Dokl. AN SSSR, 1986, vol. 290, no. 5, pp. 1072–1076.

    Google Scholar 

  18. Fuchs, A.N., Mekhanika aerozolei (Aerosol Mechanics), Moscow: Izd-vo AN SSSR, 1955.

    Google Scholar 

  19. Stechkina, I.B. and Kirsh, A.A., Diffusive method for determining the dimensions of nanoparticles suspended in a gas, Kolloid. Zhurnal, 2013, vol. 75, no. 4, pp. 538–540. https://doi.org/10.7868/S0023291213040137

    Google Scholar 

  20. Kapranov, Yu.I., Models of colmatage of porous media, in Mathematical Models of Filtration and their Applications, Novosibirsk: Lavrent’ev Institute of Hydrodynamics, 1999, pp. 89–97.

    Google Scholar 

  21. Nigmatulin, R.I., Dynamics of Multiphase Media, vol. 1, Washington: Hemisphere, 1989.

    Google Scholar 

  22. Sedov, L.I., Mekhanika sploshnoi sredy (Continuum Mechanics), vol. 1, Moscow: Nauka, 1983.

    Google Scholar 

  23. Einstein, A., Investigations on the Theory of Brownian Movement, New York: Dover, 1956.

    MATH  Google Scholar 

  24. Landau, L.D. and Lifshitz E.M., Fluid Mechanics (Course of Theoretical Physics. Vol. 6), 2nd ed., Oxford: Pergamon Press, 1987.

    Google Scholar 

  25. Wallis, G.B., One-Dimensional Two-Phase Flow, New York: McGraw-Hill, 1969; Moscow: Mir, 1972.

    Google Scholar 

  26. Loitsyanskii, L.G., Mekhanika zhidkosti i gaza (Mechanics of Liquids and Gases), Moscow: Nauka, 1973.

    Google Scholar 

  27. Levich, V.G., Fiziko-knimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Gos. Izdat. Fiz.-Matem. Liter., 1959.

    Google Scholar 

  28. Batenko, S.R. and Terekhov, V.I., Friction and heat transfer in laminar separation flow downstream of a rectangular setback in the presence of porous blow or suction, Zh. Prikl.Mekh. Tekh. Fiz., 2006, vol. 47, no. 1, pp. 18–28.

    MATH  Google Scholar 

  29. Boiko, A.V. and Kornilov, V.I., Measurement of the local surface friction coefficient using a hot-wire probe, Teplofizika i Aeromekhanika, 2010, vol. 17, no. 4, pp. 613–623.

    Google Scholar 

  30. Tikhonov, A.N. and Samarskii, A.A., Uravneniya matematicheskoi fiziki (Equations of Mathematical Physics), Moscow: Izd-vo MGU, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Amanbaev.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2019, No. 3, pp. 70–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amanbaev, T.R. Simulation and Calculation of Time-dependent Filtration of a Suspension in Dead-end and Open Channels with Regard to Dispersed Particles Diffusion and Deposit Formation. Fluid Dyn 54, 361–373 (2019). https://doi.org/10.1134/S0015462819020022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819020022

Keywords

Navigation