Skip to main content
Log in

Acoustic Waves in a Liquid with Gas Bubbles Covered by a Viscoelastic Shell

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The propagation of acoustic waves in a mixture of a liquid with gas bubbles encapsulated with a viscoelastic shell is investigated. The system of differential equations of the disturbed motion of the mixture is given and the dispersion relation is derived. Low-frequency asymptotics of the phase velocity and attenuation coefficient are obtained. The dependence of the equilibrium speed of sound on the perturbation frequency and the dimension of encapsulated bubbles is established and illustrated. The theory is compared with available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nigmatulin, R.I., Dynamics of Multiphase Media, Vols. 1 and 2, Washington: Hemisphere, 1989; Moscow: Nauka, 1987.

    Google Scholar 

  2. Nakoryakov, V.E., Pokusaev, B.G., and Shreiber, I.R., Volnovaya dinamika gazo- i parozhidkostnykh sred (Wave Dynamics of Gas- and Vapor-Liquid Media), Moscow: Energoatomizdat, 1990.

    MATH  Google Scholar 

  3. Leighton, T.G., The Acoustic Bubble, London: Acad. London, 1994.

    Google Scholar 

  4. Temkin, S., Suspension Acoustics: An Introduction to the Physics of Suspensions, Cambridge: Cambridge Univ. Press, 2005.

    Book  MATH  Google Scholar 

  5. Wilson, P.S., Roy, R.A., and Carey, W.M., Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency, J. Acoust. Soc. Amer., 2005, vol. 117, no. 4, pp. 1895–1910.

    Article  ADS  Google Scholar 

  6. Duro, V., Rajaona, D.R., Decultot, D., and Maze, G. Experimental study of sound propagation through bubbly water: comparison with optical measurements, IEEE J. Oceanic Engineering, 2011, vol. 36, no. 1, pp. 114–125.

    Article  ADS  Google Scholar 

  7. Leroy, V., Strybulevych, A., Page, J.H., and Scanlon, M.G., Sound velocity and attenuation in bubbly gels measured by transmission experiments, J. Acoust. Soc. Amer., 2008, vol. 123, no. 4, pp. 1931–1940.

    Article  ADS  Google Scholar 

  8. Commander, K.W., and Prosperetti, A., Linear pressure waves in bubbly liquids: Comparison between theory and experiments, J. Acoust. Soc. Amer., 1989, vol. 85, no. 2. pp. 732–746.

    Article  ADS  Google Scholar 

  9. Chung, N.M., and Lin, W.K., Sound velocity and its relationship with interfacial area density in a steam/water, two-phase bubbly flow, Flow Measurements and Instrumentation, 1992, vol. 3, no. 2, pp. 65–71.

    Article  MathSciNet  Google Scholar 

  10. Gubaidullin, D.A., and Fedorov, Yu.V., Sound waves in two-fraction polydisperse bubbly media, Appl. Mat. Mech., 2013, vol. 77, no. 5, pp. 532–540.

    Article  MATH  Google Scholar 

  11. Varaksin, A.Yu., Fluid dynamics and thermal physics of two-phase flows: problems and achievements, High Temp., 2013, vol. 51, no. 3, pp. 377–407.

    Article  Google Scholar 

  12. Prosperetti, A., Vapor bubbles, Annu. Rev. Fluid Mech., 2017, vol. 49, p. 221–248.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Goldberg, B.B., Raichlen, J.S., and Editors, F.F., Ultrasound Contrast Agents. Basic Principles and Clinical Applications, Martin Dunitz, 2001.

    Google Scholar 

  14. Sboros, V., Response of contrast agents to ultrasound, Advanced Drug Deliver y Reviews, 2008, vol. 60, pp. 1117–1136.

    Article  Google Scholar 

  15. Ma, X., Wang, X., Hahn, K., and Sanchez, S., Motion control of urea-powered biocompatible hollow micro-capsules, ACS Nano, 2016, vol. 10, pp. 3597–3605.

    Article  Google Scholar 

  16. Church, C.C., The effects of an elastic solid surface layer on the radial pulsations of gas bubbles, J. Acoust. Soc. Amer., 1995, vol. 97, no. 3, pp. 1510–1521.

    Article  ADS  Google Scholar 

  17. Hoff, L., Sontum, P.C., and Hovem, J.M., Oscillations of polymeric microbubbles: Effects of the encapsulating shell, J. Acoust. Soc. Amer., 2000, vol. 107, no. 4, pp. 2272–2280.

    Article  ADS  Google Scholar 

  18. Alekseev, V.N., and Rybak, S.A., Oscillations of gas bubbles in elastic media, Akust. Zh., 1999, vol. 45, no. 5, 603–609.

    Google Scholar 

  19. Khismatullin, D.B., and Nadim, A., Radial oscillations of encapsulated microbubbles in viscoelastic liquids, Phys. Fluids, 2002, vol. 14, no. 10, pp. 3534–3557.

    Article  ADS  MATH  Google Scholar 

  20. Landau, L.D., and Lifshitz, E.M., Fluid Mechanics (2nd ed.), Pergamon, 1987; Moscow: Nauka, 1988.

    Google Scholar 

  21. Petrov, A.G., Analiticheskaya gidrodinamika (Analytic Hydrodynamics), Moscow: Fizmatlit, 2010.

    Google Scholar 

  22. Coulouvrat, F., Thomas, J.L., Astafyeva, K., Taulier, N., Conoir, J.M., and Urbach, W., A model for ultrasound absorption and dispersion in dilute suspensions of nanometric contrast agents, J. Acoust. Soc. Amer., 2012, vol. 136, no. 6, pp. 3748–3759.

    Article  ADS  Google Scholar 

  23. Lee, K.M., Wilson, P.S., and Wochner, M.S., Attenuation of low-frequency underwater sound using an array of air-filled balloons and comparison to effective medium theory, J. Acoust. Soc. Amer., 2017, vol. 142, no. 6, pp. 3443–3449.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Gubaidullin or Yu. V. Fedorov.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya RAN. Mekhanika Zhidkosti i Gaza, 2019, No. 2, pp. 126–133.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Fedorov, Y.V. Acoustic Waves in a Liquid with Gas Bubbles Covered by a Viscoelastic Shell. Fluid Dyn 54, 270–278 (2019). https://doi.org/10.1134/S0015462819010075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462819010075

Key words

Navigation