Skip to main content
Log in

Effect of Fluid Viscosity on the Faraday Surface Waves

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The comprehensive experimental analysis of the fluid viscosity effect on the standing gravity waves excited at parametric resonance is carried out. The viscous effects on the frequency range of excitement of the second wave mode, its resonance dependences, and the processes of damping and approaching the steady-state regime are quantitatively estimated by varying the viscosity over a wide range. It is found that the waves are regularized without breaking when the kinematic viscosity of the workingmedium becomes higher than a threshold value. A mechanism of viscous regularization of wave motion is suggested. In accordance with this mechanism, the effects observed experimentally relate to the presence of the shortwave cutoff domain in which viscous dissipation becomes the dominant factor and the shortwave perturbations responsible for breaking the standing wave are suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Ibrahim, “Recent Advances in Physics of Fluid Parametric Sloshing and Related Problems,” ASME. J. Fluids Eng. 137 (9), 090801–090801–52. doi:10.1115/1.4029544

  2. V. V. Bolotin, “FluidMotion in an Oscillating Reservoir,” Prikl. Mat. Mekh. 20(2), 293–294 (1956).

    Google Scholar 

  3. R. A. Ibrahim, Liquid Sloshing Dynamics: Theory and Applications (Cambridge Univ. Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  4. V. A. Kalinichenko and S. Ya. Sekerzh–Zenkovich, “Breakdown of parametric fluid oscillations,” Fluid Dynamics 45 (1), 113–120 (2010).

    Article  ADS  Google Scholar 

  5. V. A. Kalinichenko, “Breaking of Faraday Waves and Jet Launch Formation,” Fluid Dynamics 44 (4), 577–586 (2009).

    Article  ADS  Google Scholar 

  6. G. I. Taylor, “An Experimental Study of StandingWaves,” Proc.Roy. Soc. London. Ser.A 218 (1132), 44–59 (1953).

    Article  ADS  Google Scholar 

  7. H. Bredmose, M. Brocchini, D. H. Peregrine, and L. Thais, “Experimental Investigation and Numerical Modelling of Steep ForcedWaterWaves,” J. FluidMech. 490, 217–249 (2003).

    Article  ADS  MATH  Google Scholar 

  8. H. Lamb, Hydrodynamics (Cambridge University Press, Cambridge, 1932; Gostekhizdat, Moscow, Leningrad, 1947).

    MATH  Google Scholar 

  9. H. H. LeBlond and F. Mainardi, “The Viscous Damping of Capillary–Gravity Waves,” Acta Mechanica 68 (3–4), 203–222 (1987).

    Article  Google Scholar 

  10. Yu. V. Sanochkin, “Viscosity Effect on Free Surface Waves in Fluids,” Fluid Dynamics 35 (4), 599–604 (2000).

    Article  ADS  MATH  Google Scholar 

  11. L. N. Sretenskii, “Waves on the Surface of a Viscous Fluid. Pt. 1,” Tr. TsAGI 541, 1–34 (1941).

    Google Scholar 

  12. A. V. Bazilevskii, V. A. Kalinichenko, and A. N. Rozhkov, “Viscous Regularization of Breaking Faraday Waves,” JETP Letters 107 (11), 684–689 (2018).

    Article  ADS  Google Scholar 

  13. G. N. Mikishev and B. I. Rabinovich, Dynamics of Thin–Walled Structures with Sections Containing Fluid (Mashinostroenie,Moscow, 1971) [in Russian].

    Google Scholar 

  14. A. V. Bazilevskii, S. Wongwises, V. A. Kalinichenko, and S. Ya. Sekerzh–Zen’kovich, “Experimental Study of the Bottom Structure Effect on the Damping of Standing Surface Waves in a Rectangular Vessel,” Fluid Dynamics 36 (4), 652–657 (2001).

    Article  MATH  Google Scholar 

  15. S. V. Nesterov, “Parametric Excitation of Waves on the Surface of a Heavy Liquid,” Morskie Gidrofiz. Issledovaniya 3 (45), 87–97 (1969).

    Google Scholar 

  16. G. H. Keulegan, “Energy Dissipation in Standing Waves in Rectangular Basins,” J. Fluid. Mech. 6 (1), 33–50 (1959).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J.W. Miles, “Surface–Wave Damping in Closed Basins,” Proc. R. Soc. Lond. A. 297, 459–475 (1967).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bazilevskii.

Additional information

Original Russian Text © A.V. Bazilevskii, V.A. Kalinichenko, A.N. Rozhkov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 6, pp. 30–42.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazilevskii, A.V., Kalinichenko, V.A. & Rozhkov, A.N. Effect of Fluid Viscosity on the Faraday Surface Waves. Fluid Dyn 53, 750–761 (2018). https://doi.org/10.1134/S0015462818060150

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818060150

Key words

Navigation