Skip to main content
Log in

Modelling of the Interaction of Unsteady High-Intensity Turbulence Flow with Heat- and Mass-Transfer in the Boundary Layer on the Surface

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The dynamic and thermal characteristics of unsteady near-wall flows are investigated numerically on the basis of two-parameter turbulence models under conditions of high-turbulence free stream and impact of perturbing heat- and mass-transfer factors in the boundary layer. The effect of mass-transfer parameters considered on the permeable section on the development of dynamic and thermal processes in the steady-state turbulent boundary layer is studied and the boundary layer structure along the surface is investigated. The mutual action of time harmonic oscillations of the velocity of outer inviscid free stream and the heat-transfer parameters on wall on the development of time-dependent heat-transfer characteristics in turbulent flow is analyzed. The numerical results are compared with experimental and theoretical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Simpson, R. J. Moffat, and W. M. Kays, “The Turbulent Boundary Layer on a Porous Plate: Experimental Skin Friction with Variable Injection and Suction,” Int. J. Heat Mass Transfer 12 (7), 771–789 (1969).

    Article  Google Scholar 

  2. R. L. Simpson, “The Effect of a Discontinuity in Wall Blowing on the Turbulent Incompressible Boundary Layer,” Int. J. HeatMass Transfer 14 (12), 2083–2097 (1971).

    Article  Google Scholar 

  3. R. L. Simpson, “Characteristics of Turbulent Boundary Layers at Low Reynolds Numbers with and without Transpiration,” J. Fluid Mech. 42 (4), 783–799 (1970).

    Article  Google Scholar 

  4. V. A. Aleksin and V. D. Sovershennyi, “Numerical Calculation of a Turbulent Boundary Layer with a Sharp Change in the Boundary Conditions,” in: Turbulent Flows (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  5. V. A. Aleksin, V. D. Sovershennyi, and S. P. Chikova, “Calculation of the Turbulent Boundary Layer at Surfaces with Porous Sections,” Fluid Dynamics 13 (1), 51–57 (1978).

    Article  ADS  MATH  Google Scholar 

  6. P. M. Moretti and W. M. Kays, “Heat Transfer to a Turbulent Boundary–Layer with Varying Freestream Velocity and Varying Surface Temperature, an Experimental Study,” Intern. J. Heat Mass Transfer 8 (9), 1187–1202 (1965).

    Article  Google Scholar 

  7. A. M. Savill (Ed.), Transition Modelling for Turbomachinery II: An Updated Summ. of ERCOFTAC Trans. SIG Progr. 2nd Workshop (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  8. E. Ya. Epik, “Heat Transfer Effects in Transitions,” in: Proc. on Turbulent Heat Transfer: Engineering Foundation Conf. 1996 (New York; San Diego, California, 1996), pp. 1–47.

    Google Scholar 

  9. A. M. Savill, “Evaluation of Turbulent Models for Predicting Transition in Turbomachinery Flows,” in Transition Modelling for Turbomachinery III: A Final Summ. of ERCOFTAC Trans. SIG Progr. 3rd Workshop (Cambridge University Press, Cambridge, 1995), pp. 3–13.

    Google Scholar 

  10. S. A. Gaponov and N.M. Terekhova, “Joint Effect of Heat and Mass Transfer on the Compressible Boundary Layer Stability,” Fluid Dynamics 51 (1), 45–55 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. V. A. Aleksin and S. N. Kazeykin, “Modeling the Effect of Freestream Turbulence on Unsteady Boundary Layer Flow,” Fluid Dynamics 35 (6), 846–857 (2000).

    Article  MATH  Google Scholar 

  12. V. A. Aleksin, “Simulation of the Effect of the Freestream Turbulence Parameters on Heat Transfer in an Unsteady Boundary Layer,” Fluid Dynamics 38 (2), 237–249 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. S. Ginevskii, V. A. Ioselevich, A. V. Kolesnikov, Yu. V. Lapin, V. A. Pilipenko, and A. N. Sekundov, “Methods of Calculating the Turbulent Boundary Layer,” in: Advances in Science and Engineering. Fluid Mechanics, Vol. 11 (VINITI,Moscow, 1978) [in Russian], pp. 155–304.

    Google Scholar 

  14. V. C. Patel, W. Rodi, and G. Scheuerer, “TurbulenceModels forNear–Wall and Low Reynolds Number Flows: a Review,” AIAA Journal 23 (9), 1308–1319 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  15. W. P. Jones and B. E. Launder, “The Calculation of Low–Reynolds–numberPhenomena with a Two–Equation Model of Turbulence,” Intern. J. Heat and Mass Transfer 16 (6), 1119–1130 (1973).

    Article  Google Scholar 

  16. K.–Y. Chien, “Predictions of Channel and Boundary–Layer Flows with a Low–Reynolds–Number Turbulence Model,” AIAA Journal 20 (1), 33–38 (1982).

    Article  ADS  MATH  Google Scholar 

  17. B. J. Abu–Ghannam and R. Shaw, “Natural Transition of Boundary Layers—the Effect of Turbulence, Pressure Gradient, and Flow History,” J.Mech. Engng. Sci. 22 (5), 213–228 (1980).

    Article  Google Scholar 

  18. V. A. Aleksin, “Simulation of the Effect of High–Intensity Turbulence Flow Parameters on Unsteady Boundary Layers with Streamwise Pressure Gradients,” Fluid Dynamics 43 (2), 274–286 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. V. A. Aleksin, “Modeling the Freestream Parameter Effect on Unsteady Boundary Layers with Positive Pressure Gradients,” Fluid Dynamics 47 (1), 70–83 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. V. A. Aleksin and A. M. Kudryakov, “Unsteady Periodic Boundary Layer with Backflow Zones,” Fluid Dynamics 26 (5), 703–711 (1991).

    MATH  Google Scholar 

  21. J. Cousteix, “Three–Dimensional and Unsteady Boundary–Layer Computations,” Annu. Rev. Fluid Mech. 18, 173–196 (1986).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. T. Cebeci, “Calculation of Unsteady Two–Dimensional Laminar and Turbulent Boundary Layers with Fluctuations in External Velocity,” Proc. Roy. Soc. London. Ser. A 355 (1681), 225–238 (1977).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. S. K. F. Karlsson, “An Unsteady Turbulent Boundary Layer,” J. Fluid Mech. 5 (4), 622–636 (1959).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Aleksin.

Additional information

Original Russian Text © V.A. Aleksin, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 6, pp. 55–66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksin, V.A. Modelling of the Interaction of Unsteady High-Intensity Turbulence Flow with Heat- and Mass-Transfer in the Boundary Layer on the Surface. Fluid Dyn 53, 774–785 (2018). https://doi.org/10.1134/S0015462818060137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818060137

Key words

Navigation