Energy Spectra and Fluxes in Dissipation Range of Turbulent and Laminar Flows

Abstract

Two well-known turbulence models to describe the energy spectrum in the inertial and dissipative ranges simultaneously are by Pao (1965) and Pope (2000). In this paper, we compute energy spectrum E(k) and energy flux Π(k) using direct numerical simulations on grids up to 40963, and show consistency between the numerical results and predictions by the aforementioned models for turbulence flows. We also consider the laminar flow in which viscosity dominates over nonlinearity. For this case we suggest a modified model that predicts E(k) ~ k−1 exp(−k) and Π(k) ~ k exp(−k) in dissipation range of scales and verify it using numerical simulations. We emphasize the difference revealing local energy transfer for the turbulent flows and nonlocal one for the laminar flows at low Reynolds number.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. N. Kolmogorov, Dokl. Acad. Nauk SSSR 30, 301 (1941).

    ADS  Google Scholar 

  2. 2.

    U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, Cam–bridge, 1995).

    Book  MATH  Google Scholar 

  3. 3.

    W. D. McComb, The Physics of Fluid Turbulence, Oxford Engineering Science Series (Clarendon Press, Oxford, 1990).

    Google Scholar 

  4. 4.

    P. A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004).

    MATH  Google Scholar 

  5. 5.

    T. Ishihara, T. Gotoh, and Y. Kaneda, Annu. Rev. Fluid Mech. 41, 165 (2009).

    ADS  Article  Google Scholar 

  6. 6.

    D. C. Leslie, Developments in the Theory of Turbulence (Clarendon Press, Oxford, 1973).

    MATH  Google Scholar 

  7. 7.

    M. Lesieur, Turbulence in Fluids (Springer–Verlag, Dordrecht, 2008).

    Book  MATH  Google Scholar 

  8. 8.

    S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000).

    Book  MATH  Google Scholar 

  9. 9.

    Y.–H. Pao, Phys. Fluids 8, 1063 (1965).

    ADS  Article  Google Scholar 

  10. 10.

    D. O. Martińez, S. Chen, G. D. Doolen, R. H. Kraichnan, L.–P. Wang, and Y. Zhou, J. Plasma Phys. 57, 195 (1997).

    ADS  Article  Google Scholar 

  11. 11.

    S. G. Saddoughi and S. V. Veeravalli, J. Fluid Mech. 268, 333 (1994).

    ADS  Article  Google Scholar 

  12. 12.

    H. L. Grant, R.W. Stewart, and A. Moilliet, J. Fluid Mech. 12, 241 (1962).

    ADS  Article  Google Scholar 

  13. 13.

    T. Ishihara, Y. Kaneda, M. Yokokawa, K. Itakura, and A. Uno, J. Phys. Soc. Jpn. 74, 1464 (2005).

    ADS  Article  Google Scholar 

  14. 14.

    B. Lautrup, Physics of Continuous Matter, Second Edition: Exotic and Everyday Phenomena in the MacroscopicWorld (CRC Press, Boca Raton, FL, 2011), 2nd ed.

    MATH  Google Scholar 

  15. 15.

    M. K. Verma, A. Kumar, and A. Pandey, New J. Phys. 19, 025012 (2017).

    ADS  Article  Google Scholar 

  16. 16.

    T. Gotoh and P. K. Yeung, in Ten Chapters in Turbulence, Ed. by P. A. Davidson, Y. Kaneda, and K. R. Sreenivasan (Cambridge University Press, Cambridge, 2013), pp. 87–131.

  17. 17.

    G. K. Batchelor, I. D. Howells, and A. A. Townsend, J. Fluid Mech. 5, 134 (1959).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    R. H. Kraichnan, Phys. Fluids 11, 945 (1968).

    ADS  Article  Google Scholar 

  19. 19.

    M. F. Linkmann and A. N. Morozov, Phys. Rev. Lett. 115, 134502 (2015).

    ADS  Article  Google Scholar 

  20. 20.

    M. K. Verma, Rep. Prog. Phys. 80, 087001 (2017).

    ADS  Article  Google Scholar 

  21. 21.

    J.A. Domaradzki and R. S. Rogallo, Phys. FluidsA2, 414 (1990).

    Google Scholar 

  22. 22.

    Y. Zhou, Phys. Fluids 5, 1092 (1993).

    ADS  Article  Google Scholar 

  23. 23.

    M. K. Verma, A. Ayyer, O. Debliquy, S. Kumar, and A. V. Chandra, Pramana–J. Phys. 65, 297 (2005).

    ADS  Article  Google Scholar 

  24. 24.

    S. A. Orszag, J. Fluid Mech. 41, 363 (1970).

    ADS  Article  Google Scholar 

  25. 25.

    R. H. Kraichnan, J. Fluid Mech. 5, 497 (1959).

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    M. K. Verma, A. G. Chatterjee, R. K. Yadav, S. Paul, M. Chandra, and R. Samtaney, Pramana–J. Phys. 81, 617 (2013).

    ADS  Article  Google Scholar 

  27. 27.

    C. Canuto,M. Y.Hussaini, A. Quarteroni, and T. A. Zang, SpectralMethods in FluidDynamics (Springer–Verlag, Berlin Heidelberg, 1988).

    Google Scholar 

  28. 28.

    R. Stepanov, F. Plunian, M. Kessar, and G. Balarac, Phys. Rev. E 90, 053309 (2014).

    ADS  Article  Google Scholar 

  29. 29.

    G. Dar, M. K. Verma, and V. Eswaran, Physica D 157, 207 (2001).

    ADS  Article  Google Scholar 

  30. 30.

    M. K. Verma, Phys. Rep. 401, 229 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    K. S. Reddy and M. K. Verma, Phys. Fluids 26, 025109 (2014).

    ADS  Article  Google Scholar 

  32. 32.

    K. R. Sreenivasan, Phys. Fluids 7, 2778 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    P. K. Yeung and Y. Zhou, Phys. Rev. E 56, 1746 (1997).

    ADS  Article  Google Scholar 

  34. 34.

    T. Gotoh, D. Fukayama, and T. Nakano, Phys. Fluids 14, 1065 (2002).

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    M. Yokokawa, K. Itakura, A. Uno, T. Ishihara, and Y. Kaneda, in Proceeding Supercomputing 2002 (2002).

    MATH  Google Scholar 

  36. 36.

    P. D. Mininni, A. Alexakis, and A. Pouquet, Phys. Rev. E 77, 036306 (2008).

    ADS  Article  Google Scholar 

  37. 37.

    D. A. Donzis and K. R. Sreenivasan, J. Fluid Mech. 657, 171 (2010).

    ADS  Article  Google Scholar 

  38. 38.

    R. H. Kraichnan, J. Fluid Mech. 47, 525 (1971).

    ADS  Article  Google Scholar 

  39. 39.

    V. Yakhot and S. A. Orszag, J. Sci.Comput. 1, 3 (1986).

    MathSciNet  Article  Google Scholar 

  40. 40.

    G. Falkovich, Phys. Fluids 6, 1411 (1994).

    ADS  Article  Google Scholar 

  41. 41.

    D. Lohse and A. Müller–Groeling, Phys. Rev. Lett. 74, 1747 (1995).

    ADS  Article  Google Scholar 

  42. 42.

    W. Dobler, N. E. L. Haugen, T. A. Yousef, and A. Brandenburg, Phys. Rev. E 68, 026304 (2003).

    ADS  Article  Google Scholar 

  43. 43.

    M. K. Verma and D. A. Donzis, J. Phys. A: Math. Theor. 40, 4401 (2007).

    ADS  Article  Google Scholar 

  44. 44.

    O. Debliquy, M. K. Verma, and D. Carati, Phys.Plasmas 12, 042309 (2005).

    ADS  Article  Google Scholar 

  45. 45.

    G. Falkovich and A. Fouxon, Phys. Rev. Lett. 94, 214502 (2005).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. K. Verma.

Additional information

Original Russian Text © M.K. Verma, A. Kumar, P. Kumar, S. Barman, A.G. Chatterjee, R. Samtaney, R.A. Stepanov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 6, pp. 142–154.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verma, M.K., Kumar, A., Kumar, P. et al. Energy Spectra and Fluxes in Dissipation Range of Turbulent and Laminar Flows. Fluid Dyn 53, 862–873 (2018). https://doi.org/10.1134/S0015462818050166

Download citation

Keywords

  • hydrodynamic turbulence
  • turbulence modeling
  • direct numerical simulation