Skip to main content
Log in

Estimation of the Geometric Parameters of a Reservoir Hydraulic Fracture

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The exact solution of self-excited vibrations of a reservoir hydraulic fracture after stopping the hydraulic fracture fluid injection is obtained on the basis of the generalized hyperbolictype Perkins-Kern-Nordgren model of the development of vertical reservoir hydraulic fracture. The vibrations are excited by the rarefaction wave developed after stopping the injection. The solution obtained is used to estimate the height, the width, and the half-length of the reservoir hydraulic fracture on the basis of the field data of bottomhole pressure gauges by the time of stopping the hydraulic fracture fluid injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. Joukowsky, “Über den hydraulischen Stoss in Wasserleitungsro¨ hren [On the hydraulic hammer in water supply pipes],” Memoires de l’Academie Imperiale des Sciences de St.-Petersbourg, Ser. 8 9 (5), 1–71 (1900) [in German].

    Google Scholar 

  2. S. A. Khristianovich, Continuum Mechanics (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  3. I. A. Charnyi, Unsteady Pipe Flow of a Real Fluid (GITTL,Moscow, Leningrad, 1951) [in Russian].

    Google Scholar 

  4. M. Kay, Practical Hydraulics, 2nd ed. (Taylor and Francis, 2008).

    Google Scholar 

  5. A. Tijsselin and A. Anderson, “Johannes von Kries and the History ofWater Hammer,” Journal of Hydraulic Engineering 133 (1), 1–8 (2007).

    Article  Google Scholar 

  6. E. B. Wylie and V. L. Streeter, Fluid Transients in Systems (Prentice-Hall, Englewood Cliffs, N.J., 1993).

    Google Scholar 

  7. C. R. Holzhausen and R. P. Gooch, “Impedance of Hydraulic Fracture: Its Measurement and Use for Estimating Fracture Closure and Dimensions,” Paper SPE 13892 Presented at SPE/DOE Low Permeability Gas Reservoirs Symposium, Denver,May 19–22, 1985. DOI: https://doi.org/10.2118/13892-MS

    Google Scholar 

  8. T. W. Patzek and A. De, “Lossy Transmission Line Model of Hydrofractured Well Dynamics,” Journal of Petroleum Science and Engineering 25 (1–2), 59–77 (2000). DOI: https://doi.org/10.2118/46195-MS

    Article  Google Scholar 

  9. R. W. Paige, L. R. Murray, and J. D. M. Roberts, “Field Application of Hydraulic Impedance Testing for FractureMeasurement,” SPE J. 10 (01), 6–12 (1995). DOI: https://doi.org/10.2118/26525-PA

    Google Scholar 

  10. J.N. Sneddon and D.S. Berry, The Classical Theory of Elasticity (Springer, Berlin etc., 1958; Fizmatgiz, Moscow, 1961).

    Google Scholar 

  11. M. A. Carey, S. Mondal, and M. M. Sharma, “Analysis of Water Hammer Signatures for Fracture Diagnostics,” Paper SPE-174866-MS Presented at the SPE Annual Technical Conference and Exhibition, Houston, Texas, September 28–30, 2015. DOI: http://dx.doi.org/10.2118/174866-MS

    Google Scholar 

  12. J. Iriarte, J. Merritt, and B. Kreyche, “UsingWater Hammer Characteristics as a Fracture Treatment Diagnostic,” Paper SPE-185087-MC Presented at the 2017 SPE Oklahoma City Oil and Gas Symposium, 27–31 March, Oklahoma City, Oklahoma, USA. DOI: https://doi.org/10.2118/185087-MS

    Google Scholar 

  13. A. M. Il’yasov and G. T. Bulgakova, “Quasi-one-dimensional Model of the Hyperbolic Type of Reservoir Hydraulic Fracturing,” Vest. Sam. Gos. Tekhn. Un-ta Ser. Fiz.-Mat. Nauki 20 (4), 739–754 (2016). DOI: http://dx.doi.org/10.14498/vsgtu1522

    Article  MATH  Google Scholar 

  14. T. K. Perkins and L. R. Kern, “Width of Hydraulic Fractures,” Journal of Petroleum Technology 13 (4), 937949 (1961).

    Google Scholar 

  15. R. P. Nordgren, “Propagation of a Vertical Hydraulic Fracture,” Society of Petroleum Engineers J. 12 (4), 306–314 (1972).

    Article  Google Scholar 

  16. I. E. Idel’chik, Handbook on Hydraulic Resistances (Mashinostroenie,Moscow, 1992) [in Russian].

    Google Scholar 

  17. O. E. Ivashnev and N. N. Smirnov, “Formation of a Hydraulic Fracture in a Porous Medium,” Vestn. MGU. Matematika,Mekhanika 6, 28–36 (2003).

    MATH  Google Scholar 

  18. F. I. Kotyakhov, Physics of Gas and Oil Reservoirs (Nedra, Moscow, 1977) [in Russian].

    Google Scholar 

  19. P. Malkowski and L. Ostrowski, “The Methodology for the Young Modulus Derivation for Rocks and Its Value,” in: Proc. ISRM European Rock Mechanics Symposium—EUROCK, June 2–22, 2017, Ostrava, 191 (Elsevier Ltd, 2017), p. 134–141.

    Google Scholar 

  20. A.M. Il’yasov, “Estimation of the Strength of a Cement Ring Adjacent to the Borehole of a ProductionWell,” Zh. Prikl.Mekh. Tekh. Fiz. 58 (1), 210–217 (2017).

    Google Scholar 

  21. Yu. N. Rabotnov, Mechanics of Deformed Solid Body (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  22. M. J. Economides and T. Martin, Modern Fracturing. Enhancing Natural Gas Production (Energy Tribune Publishing Inc., Houston, TX. USA, 2007).

    Google Scholar 

  23. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  24. M. J. Economides and K. G. Nolte, Reservoir Stimulation (Wiley, NY and Chichester, 2000).

    Google Scholar 

  25. P. I. Nigmatulin, Fundamentals of Mechanics of Heterogeneous Media (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Baikov.

Additional information

Original Russian Text © V.A. Baikov, G.T. Bulgakova, A.M. Il’yasov, D.V. Kashapov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 5, pp. 64–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baikov, V.A., Bulgakova, G.T., Il’yasov, A.M. et al. Estimation of the Geometric Parameters of a Reservoir Hydraulic Fracture. Fluid Dyn 53, 642–653 (2018). https://doi.org/10.1134/S0015462818050038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818050038

Key words

Navigation