Skip to main content
Log in

On the Wave Resistance of a Two-Dimensional Body at Fixed Froude Numbers

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The problem of determining the wave resistance created by progressive waves generated by a moving two-dimensional body at fixed Froude numbers is considered. The second dimensionless parameter determining the waves is the dimensionless amplitude defined as the ratio of their amplitude to the wavelength. A variational principle is developed to formulate the problem of nonlinear periodic progressive waves as purely geometric. Using this principle, we have derived an infinite chain of quadratic equations with respect to the Stokes coefficients. The expansion of the wave resistance into power series of amplitude with coefficients depending only on the Froude numbers is performed in analytical form. The results of analytical and exact numerical calculations are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamb, H., Hydrodynamics, Cambridge: Cambridge Univ. Press, 1932.

    MATH  Google Scholar 

  2. Dias, F. and Vanden-Broek, J.-M., Generalised critical free-surface flows, J. Eng. Math., 2002, vol. 42, pp. 291–301.

    Article  MathSciNet  MATH  Google Scholar 

  3. Maklakov, D.V. and Petrov, A.G., On steady non-breaking downstream waves and the wave resistance, J. Fluid Mech., 2015, vol. 776, pp. 290–315.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Lord Kelvin, On ship waves, Proc. - Inst. Mech. Eng., 1887, vol. 38, pp. 409–434.

    Article  Google Scholar 

  5. Schwartz, L.W., Computer extension and analytic continuation of Stokes’ expansion for gravity waves, J. Fluid Mech., 1974, vol. 62, pp. 553–578.

    Article  ADS  MATH  Google Scholar 

  6. Longuet-Higgins, M.S., Integral properties of periodic gravity waves of finite amplitude, Proc. R. Soc. London, Ser. A, 1975, vol. 342, pp. 157–174.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Maklakov, D.V., Almost highest gravity waves on water of finite depth, Eur. J. Appl. Math., 2002, vol. 13, pp. 67–93.

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergman, S., The Kernel Function and Conformal Mapping, no. 5 of Mathematical Surveys and Monographs, New York: American Mathematical Society, 1950.

    Google Scholar 

  9. Stokes, G.G., Supplement to a paper on the theory of oscillatory waves, in Mathematical and Physical Papers, Cambridge: Cambridge Univ. Press, 1880, vol. 1, pp. 314–326.

    Google Scholar 

  10. Longuet-Higgins, M.S., Some new relations between Stokes’ coefficients in the theory of gravity waves, J. Inst. Math. Its Appl., 1978, vol. 22, pp. 261–273.

    Article  MathSciNet  MATH  Google Scholar 

  11. Cokelet, E.D., Steep gravity waves in water of arbitrary uniform depth, Proc. R. Soc. London, Ser. A, 1977, vol. 286, pp. 183–230.

    ADS  MathSciNet  MATH  Google Scholar 

  12. Petrov, A.G. and Smolyanin, V.G., Hamilton’s principle and waves on heavy liquid’s surface, in Mekhanika, sovremennye problemy (Mechanics, Modern Problems), Moscow: Moscow State Univ., 1987, pp. 57–63.

    Google Scholar 

  13. Balk, A.M., A Lagrangian for water waves, Phys. Fluids, 1996, vol. 8, no. 2, pp. 416–420.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Petrov, A.G., Analiticheskaya gidrodinamika (Analytical Hydrodynamics), Moscow: Fizmatlit, 2009.

    Google Scholar 

  15. Maklakov, D.V. and Petrov, A.G., Stokes coefficients and wave resistance, Dokl. Phys., 2015, vol. 60, no. 7, pp. 314–318.

    Article  ADS  Google Scholar 

  16. Dyachenko, A.I., Zakharov, V.E., and Kuznetsov, E.A., Nonlinear dynamics of the free surface of an ideal fluid, Plasma Phys. Rep., 1996, vol. 22, no. 10, pp. 829–840.

    ADS  Google Scholar 

  17. Zakharov, V.E., Stability of periodic waves of finite amplitude on deep liquid’s surface, Prikl. Mekh. Tekh. Fiz., 1968, no. 2, pp. 86–94.

    Google Scholar 

  18. Wolfram, S., The Mathematica Book, New York: Wolfram Media, 2003.

    MATH  Google Scholar 

  19. Duncan, J.H., A note on the evaluation of the wave resistance of two-dimensional bodies from measurements of the downstream wave profile, J. Ship Res., 1983, vol. 27, no. 2, pp. 90–92.

    Google Scholar 

  20. Maklakov, D.V., Flow over an obstruction with generation of waves on the free surface: limiting regimes, Fluid Dyn., 1995, vol. 30, no. 2, pp. 244–253.

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Maklakov.

Additional information

Original Russian Text © D.V. Maklakov, A.G. Petrov, 2018, published in Prikladnaya Matematika i Mekhanika, 2018, Vol. 82, No. 3, pp. 275–289.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maklakov, D.V., Petrov, A.G. On the Wave Resistance of a Two-Dimensional Body at Fixed Froude Numbers. Fluid Dyn 53 (Suppl 1), S1–S13 (2018). https://doi.org/10.1134/S0015462818040195

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818040195

Navigation