Skip to main content
Log in

Features of a Turbulent Jet at High Supersonic Velocities

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of modeling a turbulent supersonic jet at M = 5 using large-eddy simulation (LES) are presented. The structural features of turbulence formed in this flow are analyzed. The possibilities of the large-eddy simulation method and the complexities of simulation of the compressibility effects in jet flows at high Mach numbers are considered. Such features of the supersonic jet as the local turbulent shocklets and Mach waves are reproduced numerically. It is shown that in the neighborhood of the jet the trajectories of ejection flow are located along the front of Mach waves. Anisotropic turbulent structures whose longitudinal scale is greater than the transverse scale by an order of magnitude are revealed in the jet. An estimate of the baroclinic effects shows their weak influence on the vorticity generation in the jet flow considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Abramovich, T. A. Girshovich, S. Yu. Krasheninnikov, A. N. Sekundov, and I. P. Smirnova, Theory of Turbulent Jets (Nauka, Moscow, 1984) [in Russian].

    MATH  Google Scholar 

  2. D. Papamoschou and A. Roshko, “The Compressible Turbulent Shear Layer: an Experimental Study,” J. FluidMech. 197, 453–477 (1988).

    Article  ADS  Google Scholar 

  3. E. J. Gutmark, K. S. Schadow, and K.H. Yu, “Mixing Enhancement in Supersonic Free Shear Layer Flows,” J. Ann. Rev. Fluid Mech. 27, 375–417 (1995).

    Article  ADS  Google Scholar 

  4. J. E. Ffowcs Williams, J. Simson, and V. J. Virchis, “‘Crackle’: An Annoying Component of Jet Noise,” J. FluidMech. 71, 251–271 (1975).

    Article  ADS  Google Scholar 

  5. S. Lee, S. K. Lele, and P. Moin, “Eddy Shocklets in Decaying Compressible Turbulence,” Phys. Fluids 3, 657 (1991).

    Article  ADS  Google Scholar 

  6. S. Kida and S. A. Orszag, “Enstrophy Budget in DecayingCompressible Turbulence,” J. Sci. Comp. 5, 1–34 (1990).

    Article  MATH  Google Scholar 

  7. A. N. Sekundov, “Turbulence in a Supersonic Flow and its Interaction with a ShockWave,” Fluid Dynamics 9 (2), 166–172 (1974).

    Article  ADS  Google Scholar 

  8. O. M. Phillips, “On the Generation of Sound by Supersonic Turbulent Shear Layers,” J. of FluidMechanics 9, 1–28 (1960).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. C. K.W. Tam, “Directional Acoustic Radiation from a Supersonic Jet Generated by Shear Layer Instability,” J. FluidMech. 46, 757–768 (1971).

    Article  ADS  MATH  Google Scholar 

  10. A. Krothapalli, L. Venkatakrishnan, and L. Lourenco, “Crackle: A Dominant Component of Supersonic Jet Noise,” AIAA 2000–2024 (2000).

    Google Scholar 

  11. D. A. Buchta, A. T. Anderson, J. B. Freund, “Near-Field Shocks Radiated by High-Speed Free-Shear-Flow Turbulence,” in: 20th AIAA/CEAS Aeroacoustics Conf. (2014).

    Google Scholar 

  12. J. W. Nichols and S. K. Lele, “Large Eddy Simulation of Crackle Noise in Supersonic Jets,” Center for Turbulence Research. Annual Research Briefs 253–264 (2012).

    Google Scholar 

  13. A. A. Kraiko, A.N. Kraiko, K. S. P’yankov, and N. I. Tillyaeva, “Contouring the Nozzles Producing a Uniform Supersonic Flow or a ThrustMaximum in the Presence of a Curvilinear Sonic Line,” Fluid Dynamics 47 (2), 223–238 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. M. L. Shur, P. R. Spalart, M. Kh. Strelets, and A. V. Garbaruk, “Further Steps in LES Based Noise Prediction for Complex Jets,” AIAA Paper No. 485 (2006).

    Book  MATH  Google Scholar 

  15. A. N. Sekundov, S. A. Cheprasov, K. Ya. Yakubovskii, “Analysis of the Possibilities of the Methods for Calculating Turbulent Jet Noise,” Fluid Dynamics 47 (5), 673–681 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. D. J. Bodony and S. K. Lele, “Review of the Current Status of Jet Noise Predictions Using Large-Eddy Simulation (Invited),” AIAA Paper No. 0468, 1–36 (2006).

    Google Scholar 

  17. D. A. Lyubimov, “Development and Application of an Effective Combined RANS/ILES Method for Calculating Complicated Turbulent Jets,” Teplofiz. Vys. Temp. 46 (2), 270–282 (2008).

    Google Scholar 

  18. J. C. Lau, P. J. Morris, and M. J. Fisher, “Measurements in Subsonic and Supersonic Free Jets Using a Laser Velocimeter,” J. FluidMech. 93, 1–27 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Cheprasov.

Additional information

Original Russian Text © S.A. Cheprasov, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 4, pp. 32–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheprasov, S.A. Features of a Turbulent Jet at High Supersonic Velocities. Fluid Dyn 53, 479–484 (2018). https://doi.org/10.1134/S0015462818040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818040055

Key words

Navigation