Skip to main content
Log in

Single-Fluid Model of a Mixture for Laminar Flows of Highly Concentrated Suspensions

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

A model of laminar flow of a highly concentrated suspension is proposed. The model includes the equation of motion for the mixture as a whole and the transport equation for the particle concentration, taking into account a phase slip velocity. The suspension is treated as a Newtonian fluid with an effective viscosity depending on the local particle concentration. The pressure of the solid phase induced by particle-particle interactions and the hydrodynamic drag force with account of the hindering effect are described using empirical formulas. The partial-slip boundary condition for the mixture velocity on the wall models the formation of a slip layer near the wall. The model is validated against experimental data for rotational Couette flow, a plane-channel flow with neutrally buoyant particles, and a fully developed flow with heavy particles in a horizontal pipe. Based on the comparison with the experimental data, it is shown that the model predicts well the dependence of the pressure difference on the mixture velocity and satisfactorily describes the dependence of the delivered particle concentration on the flow velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Matas, J. F. Morris, and E. Guazzelli1, “Lateral Forces on a Sphere,” Oil and Gas Science and Technology -Rev. IFP 59 (1), 59–70 (2004).

    Article  MATH  Google Scholar 

  2. P. G. Saffman, “The Lift on a Small Sphere in a Slow Shear Flow,” J. Fluid Mech. 22, 385–400 (1965).

    Article  ADS  MATH  Google Scholar 

  3. P. G. Saffman, “Corrigendum to “The Lift on a Small Sphere in a Slow Shear Flow,” J. Fluid Mech. 31, 624–624 (1968).

    Article  Google Scholar 

  4. J. F. Morris, “A Review of Microstructure in Concentrated Suspensions and Its Applications for Rheology and Bulk Flow,” Rheol. Acta 48, 909–923 (2009).

    Article  Google Scholar 

  5. D. Leighton and A. Acrivos, “The Shear-Induced Migration of Particles in Concentrated Suspensions,” J. FluidMech. 181, 415–439 (1987).

    Article  ADS  Google Scholar 

  6. M. K. Lyon and L. G. Leal, “An Experimental Study of the Motion of Concentrated Suspensions in Two-Dimensional Channel Flow. Part 1. Monodisperse Systems,” J. FluidMech. 363, 25–56 (1998).

    Article  ADS  MATH  Google Scholar 

  7. S. A. Altobelli, R. C. Givler, and E. Fukushima, “Velocity and Concentration Measurements of Suspensions by NuclearMagnetic Resonance Imaging,” J. Rheology 35 (5), 721–734 (1991).

    Article  ADS  Google Scholar 

  8. J. E. Butler, P. D. Majors, and R. T. Bonnecaze, “Observations of Shear-Induced Particle Migration for Oscillatory Flow of a Suspension within a Tube,” Phys. Fluids 11 (10), 2865–2877 (1999).

    Article  ADS  MATH  Google Scholar 

  9. R. J. Phillips, R. C. Armstrong, R. A. Brown, A. L. Graham, and J. R. Abbott, “A Constitutive Model for Concentrated Suspensions that Accounts for Shear-Induced Particle Migration,” Phys. Fluids A. 4 (1), 30–40 (1992).

    Article  ADS  MATH  Google Scholar 

  10. L. O. Naraigh and R. Barros, “Particle-Laden Viscous Channel Flows: Model Regulation and Parameter Study,” European J. Mechanics B/Fluids 59, 90–98 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  11. P.R. Nott and J. F. Brady, “Pressure-Driven Flow of Suspensions: Simulations and Theory,” J. Fluid Mech. 275, 157–199 (1994).

    Article  ADS  MATH  Google Scholar 

  12. J. F. Morris and F. Boulay, “Curvilinear Flows of Non-Colloidal Suspensions: the Role of Normal Stresses,” J. Rheology 43, 1213–1237 (1999).

    Article  ADS  Google Scholar 

  13. R. M. Miller, J. P. Singh, and J. F. Morris, “Suspension Flow Modeling for General Geometries,” Chemical Engineering Science 64, 4597–4610 (2009).

    Article  Google Scholar 

  14. M. Manninen, V. Taivassalo, and S. Kallio, “On the Mixture Model for Multiphase Flow,” VTT Publications 288 (Technical Research Centre of Finland, 1996).

    Google Scholar 

  15. L. I. Zaichik, N. I. Drobyshevsky, A. S. Filippov, R. V. Mukin, and V. F. Strizhov, “ADiffusion-InertiaModel for Predicting Dispersion and Deposition of Low-Inertia Particles in Turbulent Flows,” Int. J. Heat Mass Transfer 53, 154–162 (2010).

    Article  MATH  Google Scholar 

  16. S. A. Boronin and A. A. Osiptsov, “Two-Continua Model of Suspension Flow in a Hydraulic Fracture,” Doklady Physics 55 (4), 199–202 (2010).

    Article  ADS  Google Scholar 

  17. C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, “Kinetic Theories for Granular Flow: Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flow Field,” J. FluidMech. 140, 223–256 (1984).

    Article  ADS  MATH  Google Scholar 

  18. D. R. Kaushal, T. Thinglas, Y. Tomita, Sh. Kuchii, and H. Tsukamoto,” “CFD Modeling for Pipeline Flow of Fine Particles at High Concentration,” Int. J. Multiphase Flow 43, 85–100 (2012).

    Article  Google Scholar 

  19. K. Ekambara, R. S. Sanders, K. Nandakumar, and J.H. Masliyah, “Hydrodynamic Simulation of Horizontal Slurry Pipeline Flow Using ANSYS-CFX,” Ind. Eng. Chem. Res. 48 (17), 8159–8171 (2009).

    Article  Google Scholar 

  20. J. T. Norman, H. V. Nayak, and R. T. Bonnecaze, “Migration of Buoyant Particles in Low-Reynolds-Number Pressure-Driven Flows,” J. FluidMech. 523, 1–35 (2005).

    Article  ADS  MATH  Google Scholar 

  21. R. I. Nigmatulin, Dynamics of Multiphase Media, Vols. 1–2 (Hemisphere, New York, 1989).

    Google Scholar 

  22. R. Jackson, “Locally Averaged Equations of Motion for a Mixture of Identical Particles and a Newtonian fluid,” Chem. Eng. Sci. 52 (15), 2457–2469 (1997).

    Article  Google Scholar 

  23. P. R. Nott, E. Guazzelli, and O. Pouliquen, “The Suspension Balance Model Revisited,” Phys. Fluids 23, 043304.1–043304.13 (2011).

  24. R. Jackson, The Dynamics of Fluidized Particles (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  25. T. R. Auton, J. C. R. Hunt, and M. Prud’homme, “The Force Exerted on a Body in Inviscid Unsteady Non-Uniform Rotational Flow,” J. Fluid Mech. 197, 241–257 (1988).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. M. R. Maxey and J. J. Riley, “Equation of Motion for a Small Rigid Sphere in a Non-Uniform flow,” Phys. Fluids 26, 883–889 (1983).

    Article  ADS  MATH  Google Scholar 

  27. J. F. Richardson and W. N. Zaki, “Sedimentation and Fluidization. Part I,” Trans. Instit. Chemical Engineers 32, 35–53 (1954).

    Google Scholar 

  28. N. S. Cheng and A. W. K. Law, “Exponential Formula for Computing Effective Viscosity,” Powder Technol. 129, 156–160 (2003).

    Article  Google Scholar 

  29. A. Shojaei and R. Arefinia, “Analysis of the Sedimentation Process in Reactive Polymeric Suspensions,” Chemical Engineering Science 61, 7565–7578 (2006).

    Article  Google Scholar 

  30. R. M. Miller and J. F. Morris, “Normal Stress-Driven Migration and Axial Development in Pressure-Driven Flow of Concentrated Suspensions,” J. Non-Newtonian Fluid Mech. 135, 149–165 (2006).

    Article  MATH  Google Scholar 

  31. J. R. Clausen, “Using the Suspension Balance Model in a Finite-Element Flow Solver,” Computers and Fluids 87, 67–78 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Boyer, O. Pouliquen, and E. Guazzelli, “Dense Suspensions in Rotating-Rod Flows: Normal Stresses and Particle Migration,” J. FluidMech. 686, 5–25 (2011).

    Article  ADS  MATH  Google Scholar 

  33. T. Dbouk, L. Lobry, and E. Lemaire, “Normal Stresses in Concentrated Non-Brownian Suspensions,” J. FluidMech. 715, 239–272 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. I.M. Krieger, “Rheology of Monodisperse Lattice,” Adv. Colloid Interface Sci. 3, 111–136 (1972).

    Article  Google Scholar 

  35. Z. Fang, A. A. Mammoli, J. F. Brady, M. S. Ingber, L. A. Mondy, and A. L. Graham, “Flow-Aligned Tensor Models for Suspension Flows,” Int. J. Multiphase Flow 28, 137–166 (2002).

    Article  MATH  Google Scholar 

  36. A. Ramachandran and D. T. Leighton Jr., “Visible Consequence in a Tube: the Impact of Secondary Flows Resulting from Second Normal Stress Differences,” Phys. Fluids 19, 053301.1–053301.15 (2007).

  37. R. G. Gillies, K. B. Hill, M. J. McKibben, and C. A. Shook, “Solids Transport by Laminar Newtonian Flows,” Powder Technology 104, 269–277 (1999).

    Article  Google Scholar 

  38. N. Tetlow, A. L. Graham, M. S. Ingber, S. R. Subia, L. A. Mondy, and S.A. Altobelli, “Particle Migration in a Couette Apparatus: Experiment and Modeling,” J. Rheology 42, 307–327 (1998).

    Article  ADS  Google Scholar 

  39. D. Kalyon, “Apparent Slip and Viscoplasticity of Concentrated Suspensions,” J. Rheology 49, 621–640 (2005).

    Article  ADS  Google Scholar 

  40. M. S. Ingber, A. L. Graham, L. A. Mondy, and Z. Fang, “An Improved Constitutive Model for Concentrated Suspensions Accounting for Shear-Induced ParticleMigration Rate Dependence on Particle Radius,” Int. J. Multiphase Flow 35, 270–276 (2009).

    Article  Google Scholar 

  41. A. A. Gavrilov, A. V. Minakov, A. A. Dekterev, and V. Y. Rudyak, “A Numerical Algorithm for Modeling Laminar Flows in an Annular Channel with Eccentricity,” Siberian J. Industrial Mathematics 13 (4), 3–14 (2010).

    MathSciNet  MATH  Google Scholar 

  42. A. A. Gavrilov, A. V. Minakov, A. A. Dekterev, and V. Y. Rudyak, “A Numerical Algorithm for Modeling Steady Laminar Flows of Non-Newtonian Fluid in Annulus with Eccentricity,” Computational Technologies 17 (1), 44–56 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gavrilov.

Additional information

Original Russian Text © A.A. Gavrilov, A.V. Shebelev, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 2, pp. 84–98.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, A.A., Shebelev, A.V. Single-Fluid Model of a Mixture for Laminar Flows of Highly Concentrated Suspensions. Fluid Dyn 53, 255–269 (2018). https://doi.org/10.1134/S0015462818020064

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818020064

Navigation