Skip to main content
Log in

Vortex Motion of an Incompressible Polymer Liquid in the Cylindrical Near-Axial Zone

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The time-dependent mathematical model describing the vortex motion of an incompressible polymeric liquid is discussed. In the steady-state case certain particular solutions are found. In the case of the steady-state pressure along the axis of cylinder, a version of deriving this model for both fixed and free boundaries is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Oldroyd, “On the Formulation of Rheological Equations of State,” Proc. R. Soc. 200, No. 1063, 523–541 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. I. Leonov and A. N. Prokunin, Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids (Chapman and Hall, New York, 1994).

    Book  Google Scholar 

  3. P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979).

    Google Scholar 

  4. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford, Clarendon Press, 1986).

    Google Scholar 

  5. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2 (Wiley, New York, 1987).

  6. H. C. Ottinger, “A Thermodynamically Admissible Reptation Model for Fast Flows of Entangled Polymers,” J. Rheol. 43, No. 6, 1461–1493 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  7. P. E. Rouse, “A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Cooling Polymers,” J. Chem. Phys. 21, No. 7, 1272–1280 (1953).

    Article  ADS  Google Scholar 

  8. T. C. B. McLeish and R.G. Larson, “Molecular Constitutive Equations for a Class of Branched Polymers: the Pom-Pom Polymer,” J. Rheol. 42, No. 1, 81–110 (1998).

    Article  ADS  Google Scholar 

  9. W. M. H. Verbeeten, G.W.M. Peters, and F. P. T. Baaijens, “Differential Constitutive Equations for Polymer Melt: the Extended Pom-PomModel,” J. Rheol. 45, No. 4, 821–841 (2001).

    Article  ADS  Google Scholar 

  10. V. N. Pokrovskii, Statistical Mechanics of Dilute Suspensions (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  11. Yu. A. Altukhov, A. S. Gusev, and G. V. Pyshnograi, Introduction to Mesoscopic Theory of Flowable Polymeric Systems (AltGPA, Barnaul, 2012) [in Russian].

    Google Scholar 

  12. G. V. Pyshnograi, A. S. Gusev, and V. N. Pokrovskii, “Constitutive Equations for Weakly Entangled Linear Polymers,” J. Non-Newtonian Fluid Mech. 163, No. 1, 17–28 (2009).

    Article  Google Scholar 

  13. J. L. Smith, “An Experimental Study of the Vortex in the Cyclone Separator,” Trans. ASME, J. Basic Engineerin. 84, No. 4, 602–608 (1962).

    Article  Google Scholar 

  14. G. A. Wan and C. C. Chang, “Measurement of the Velocity Field in a Simulated Tornado-Like Vortex Using a Three-Dimensional Velocity Probe,” J. Atmospher. Sci. 29, No. 1, 116–127 (1972).

    Article  ADS  Google Scholar 

  15. A. Yu. Gubin, “Stability of a Vortex Motion of an Viscous Incompressible Fluid,” Sib. Zh. Ind. Mat. VII, No 2(18), 40–53 (2004).

    MathSciNet  MATH  Google Scholar 

  16. O. N. Ul’yanov, “One Class of Viscous Fluid Flows,” in: Dynamics of Liquid and Gas. Collected Works. Proceedings of IMM of the Ural Branch of the Russian Academy of Sciences [in Russian]. 9, No. 2, 129–136 (2003).

    MathSciNet  Google Scholar 

  17. N. E. Golovicheva, G. V. Pyshnograi, and V. I. Popov, “Generalization of the Poiseuille Law on the Basis of the Constitutive Rheological Relation for Polymeric Liquids,” Zh. Prikl. Mekhan. Tekhn. Fiz. 40, No. 5, 158–163 (1999).

    MATH  Google Scholar 

  18. M. Abramowitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington, D.C., 1964; Nauka, Moscow, 1979).

    MATH  Google Scholar 

  19. E. Kamke, Differentialgleichungen. Lösungmethoden und Lösungen, Vol. 1 (Leipzig, 1959; Nauka, Moscow, 1971).

    Google Scholar 

  20. N. N. Yanenko, Fractional Step Method for Solving the Multidimensional Problems of Mathematical Physics (Nauka, Novosibirsk, 1967) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Blokhin.

Additional information

Original Russian Text © A.M. Blokhin, R.E. Semenko, 2018, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2018, No. 2, pp. 3–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, A.M., Semenko, R.E. Vortex Motion of an Incompressible Polymer Liquid in the Cylindrical Near-Axial Zone. Fluid Dyn 53, 177–188 (2018). https://doi.org/10.1134/S0015462818020040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462818020040

Navigation