Skip to main content
Log in

Regimes of sedimentation of a consolidated system of solid spherical particles

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The results of the experimental investigation of gravitational sedimentation of a consolidated system of solid monodisperse spherical particles in a viscous liquid are represented over wide ranges of the particle number density and the Reynolds and Stokes numbers. Empirical dependences of the velocity of sedimentation of a particle aggregate and the drag coefficient of a system of particles as functions of the initial volume number density are obtained. The boundary values of the particle number density separating the sedimentation regimes are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.I. Brounshtein and G.A. Fishbein, Hydrodynamics, Mass-and Heat Transfer in Disperse Systems (Khimiya, Leningrad, 1977) [in Russian].

    Google Scholar 

  2. A.M. Adam, V.A. Arkhipov, B.A. Burkov, I.G. Plekhanov, and A.S. Tkachenko, “Influence of the Meteorological Conditions on Propagation of an Aerosol Cloud of Liquid Rocket Fuels,” Optika Atmosfery i Okeana 21, No. 6, 504–509 (2008).

    Google Scholar 

  3. R.I. Nigmatulin, Dynamics of Multiphase Media, Vol. 1 (Hemisphere, Washington, 1989; Nauka, Moscow, 1987).

    Google Scholar 

  4. O.B. Gus’kov and B.V. Boshenyatov, “Hydrodynamic Interaction of Spherical Particles in Inviscid Fluid Flow,” Dokl. Ross. Akad. Nauk 438, No. 5, 626–628 (2011).

    Google Scholar 

  5. V.A. Arkhipov and A.S. Usanina, Motion of Disperse-Phase Particles in a Carrier Medium. Text Book (Publishing House of Tomsk State University, Tomsk, 2014).

    Google Scholar 

  6. J.H. Conway, N.J.A. Sloane, Sphere Packings, Lattices, and Groups (Springer, New York, 1988; Mir, Moscow, 1990).

    Book  MATH  Google Scholar 

  7. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Martinus Nijhoff Publishers, The Hague, 1983; Mir, Moscow, 1976).

    MATH  Google Scholar 

  8. L.D. Landau and E.M. Lifshitz, Theoretical Physics, Vol. 6. Fluid Mechanics (2nd Ed.) (Pergamon Press, 1987; Nauka, Moscow, 1988).

    MATH  Google Scholar 

  9. G.K. Batchelor, An Introduction to Fluid Dynamics (CambridgeUniversity Press, Cambridge, 1970; Mir, Moscow, 1973).

    MATH  Google Scholar 

  10. S.L. Soo, Fluid Dynamics ofMultiphase Systems (Blaisdell Pub. Co., Waltham, Mass., 1967; Mir, Moscow, 1971).

    Google Scholar 

  11. E. Barnea and J. Mizrahi, “A Generalized Approach to the Fluid Dynamics of Particulate Systems,” Chem. Eng. J. 5, 171–189 (1973).

    Article  Google Scholar 

  12. E. Barnea and J. Mizrahi, “A Generalized Approach to the Fluid Dynamics of Particulate Systems. Part 2. Sedimentation and Fluidization of Clouds of Spherical Liquid Drops,” Can. J. Chem. Eng. 53, 461–468 (1975).

    Article  Google Scholar 

  13. X. Yin and D.L. Koch, “Hindered Settling Velocity and Microstructure in Suspensions of Solid Spheres with Moderate Reynolds Numbers,” Phys. Fluids 19, P. 093302 (2007).

    Article  ADS  MATH  Google Scholar 

  14. A.A. Zaidi, T. Tsuji, and T. Tanaka, “A New Relation of Drag Force for High Stokes Number Monodisperse Spheres by Direct Numerical Simulation,” Adv. Polymer Technol. 25, 1860–1871 (2014).

    Article  Google Scholar 

  15. N.A. Fuks, Mechanics of Aerosols (Izd-vo Academy of Science of the USSR, Moscow, 1955) [in Russian].

    Google Scholar 

  16. J.M. Nitsche and G.K. Batchelor, “Break-up of a Falling Drop Containing Dispersed Particles,” J. Fluid Mech. 340, 161–175 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. M.L. Ekiel-Jezewska, B. Metzger, and E. Guazzelli, “Spherical Cloud of Point Particles Falling in a Viscous Liquid,” Phys. Fluids 18, P. 038104 (2006).

    Article  ADS  Google Scholar 

  18. G.C. Abade and F.R. Cunha, “Computer Simulation of Particles Aggregates during Sedimentation,” Comput. Meth. Appl. Mech. Eng. 196, 4597–4612 (2007).

    Article  ADS  MATH  Google Scholar 

  19. B. Metzger, M. Nicolas, and E. Guazzelli, “Falling Clouds of Particles in Viscous Fluids,” J. Fluid Mech. 580, 283–301 (2007).

    Article  ADS  MATH  Google Scholar 

  20. G. Subramanian and D.L. Koch, “Evolution of Clusters of Sedimenting Low-Reynolds-Number Particles with Oseen Interactions,” J. Fluid Mech. 603, 63–100 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. A. Mylyk, W. Meile, G. Brenn, M.L. Ekiel-Jezewska, “Break-up of Suspension Drops Settling under Gravity in a Viscous Fluid Close to a Vertical Wall,” Phys. Fluids 23, P. 063302 (2011).

    Article  ADS  Google Scholar 

  22. F. Pignatel, M. Nicolas, and E. Guazzelli, “A Falling Cloud of Particles at a Small but Finite Reynolds Number,” J. Fluid Mech. 671, 34–51 (2011).

    Article  ADS  MATH  Google Scholar 

  23. V.G. Khorguani, “On the Nature and Velocity of Falling of a System of Particles of the Same Dimensions,” Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana 2, No. 4, 394–401 (1966).

    Google Scholar 

  24. V.G. Khorguani and Kh.M. Kalov, “On Falling of a Highly Concentrated System of Coarse-Dispersion Aerosol Particles in the Atmosphere,” Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana 11, No. 3, 278–284 (1975).

    Google Scholar 

  25. W.B. Daniel, R.E. Ecke, G. Subramanian, and D.L. Koch, “Clusters of Sedimenting High-Reynolds-Number Particles,” J. Fluid Mech. 625, 371–385 (2009).

    Article  ADS  MATH  Google Scholar 

  26. V.A. Arkhipov, A.S. Usanina, and N.N. Zolotorev, “Apparatus for Investigation of Sedimentation of an Aggregate of Solid Particles in Liquid. Inventor’s Certificate of the Russian Federation No. 2015151097,” Bulletin of Invention, No. B01L 99/00 (2015).

    Google Scholar 

  27. V.A. Arkhipov, A.S. Usanina, and G.R. Shrager, “Method of Investigation of the Process of Gravitational Sedimentation of an Aggregate of Solid Particles in Liquid. Inventor’s Certificate of the Russian Federation No. 2015143575,” Bulletin of Invention, No. B01L 99/00 (2015).

    Google Scholar 

  28. I.T. Goronovskii, Yu.P. Nazarenko, and E.F. Nekryach, Brief Handbook on Chemistry (Naukova Dumka, Kiev, 1987) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Arkhipov.

Additional information

Original Russian Text © V.A. Arkhipov, A.S. Usanina, 2017, published in Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, 2017, No. 5, pp. 74–85.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, V.A., Usanina, A.S. Regimes of sedimentation of a consolidated system of solid spherical particles. Fluid Dyn 52, 666–677 (2017). https://doi.org/10.1134/S0015462817050088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462817050088

Keywords

Navigation