Advertisement

Fluid Dynamics

, Volume 52, Issue 2, pp 288–298 | Cite as

Turbulent flow structure and bubble distribution in an axisymmetric nonisothermal impinging gas-liquid jet

  • M. A. Pakhomov
  • V. I. Terekhov
Article

Abstract

The flow structure of a bubbly impinging jet in the presence of heat transfer between the two-phase flow and the surface is numerically investigated on the basis of the Eulerian approach. The model uses the system of Reynolds-averaged Navier–Stokes equations in the axisymmetric approximation written with account for the inverse effect of the bubbles on the average and fluctuating flow parameters. The influence of the gas volumetric flow rate ratio and the dimensions of the bubbles on the flow structure in a gas-liquid impinging jet is studied, In the presence of gas bubbles the liquid velocity is higher than the corresponding value in the single-phase flow. A considerable, more than twofold, anisotropy between the axial and radial turbulent fluctuations in the gas-liquid impinging jet is shown to exist. An addition of air bubbles leads to a considerable growth in the liquid velocity fluctuations in the two-phase flow (up to 50% compared with the single-fluid liquid impinging jet). An increase in the disperse phase dimensions leads to intensification of turbulence of the liquid.

Keywords

impinging bubbly jet turbulent flow structure modeling Reynolds stress transport model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. P. Dyban and A. I. Mazur, Convective Heat Transfer in Jet Flow past Bodies [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  2. 2.
    K. Jambunathan, E. Lai, M. A. Moss, and B. L. Button, “A Review of Heat Transfer Data for Single Circular Jet Impingement,” Int. J. Heat Fluid Flow 13, 106 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    S. V. Alekseenko, D. M. Markovich, V. I. Semenov, “Suppression of large-scale structures in a gas-saturated impact jet,” Tech. Phys. Lett. 1999. Vol. 25, pp. 374–376.Google Scholar
  4. 4.
    S. V. Alekseenko, D. M. Markovich, and V. I. Semenov, “Turbulent Structure of a Gas-Saturated Impinging jet,” Fluid Dynamics 37 (5), 684 (2002).CrossRefMATHGoogle Scholar
  5. 5.
    S. V. Alekseenko, V. M. Dulin, D. M. Markovich, and K. S. Pervunin, “Experimental Investigation of Turbulence Modification in Bubbly Axisymmetric Jets,” J. Eng. Thermophys. 24, 101 (2015).CrossRefGoogle Scholar
  6. 6.
    A. Serizawa, O. Takahashi, Z. Kawara, T. Komeyama, and I. Michiyoshi, “Heat Transfer Augmentation by Two- Phase Bubbly Flow Impinging Jet with a Confining Wall,” in: Proc. 9th Int. Heat Transfer Conf. IHTC-9, Israel, Jerusalem, 1990. Vol. 4 (1990), p. 93.Google Scholar
  7. 7.
    D. A. Zumbrunnen and M. Balasubramanian, “Convective Heat Transfer Enhancement Due to Gas Injection into an Impinging Liquid Jet,” J. Heat Transfer 117, 1011 (1995).CrossRefGoogle Scholar
  8. 8.
    D. Trainer, J. Kim, and S. J. Kim, “Heat Transfer and Flow Characteristics of Air-Assisted ImpingingWater Jets,” Int. J. Heat Mass Transfer 64, 501 (2013).CrossRefGoogle Scholar
  9. 9.
    M. A. Pakhomov, V. I. Terekhov, “Application of the Eulerian approach to simulating the structure of an upward bubbly flow in a tube,” J. Appl. Mech. Techn. Phys., 2016, Vol. 57, No. 3, pp. 432–440.Google Scholar
  10. 10.
    R. T. Lahey and D. A. Drew, “The Analysis of Two-Phase Flow and Heat Transfer Using a Multidimensional, Four-Field, Two-Fluid Model,” Nucl. Eng. Des. 204, 29 (2001).CrossRefGoogle Scholar
  11. 11.
    G. H. Yeoh and J. Y. Tu, “Population Balance Modelling for Bubbly Flows with Heat and Mass Transfer,” Chem. Eng. Sci. 59, 3125 (2004).CrossRefGoogle Scholar
  12. 12.
    M. A. Pakhomov, V. I. Terekhov, “Numerical simulation of the flow and heat exchange in a downward turbulent gas-fluid flow in a pipe,” High. Temp. 46 (2011) pp. 715–721.Google Scholar
  13. 13.
    R. I. Nigmatulin, “Spatial Averaging in the Mechanism of Heterogeneous and Dispersed Systems,” Int. J. Multiphase Flow, 5, 353 (1979).CrossRefMATHGoogle Scholar
  14. 14.
    D. A. Drew and R. T. Lahey, “Application of General Constitutive Principles to the Derivation ofMultidimensional Two-Phase Flow Equations,” Int. J. Multiphase Flow, 5, 243 (1979).CrossRefMATHGoogle Scholar
  15. 15.
    R. I. Nigmatulin, Dynamics of Multiphase Media. Part 1, Hemisphere, New York (1991).Google Scholar
  16. 16.
    M. Lopez de Bertodano, S. J. Lee, R. T. Lahey, and D. A. Drew, “The Prediction of Two-Phase Turbulence and Phase Distribution Using a Reynolds Stress Model,” J. Fluids Eng, 112, 107 (1990).CrossRefGoogle Scholar
  17. 17.
    M. Politano, P. Carrica, and J. Converti, “A Model for Turbulent Polydisperse Two-Phase Flow in Vertical Channel,” Int. J. Multiphase Flow 29, 1153 (2003).CrossRefMATHGoogle Scholar
  18. 18.
    J. Chahed, V. Roig, and L. Masbernat, “Eulerian-Eulerian Two-Fluid Model for Turbulent Gas-Liquid Bubbly Flows,” Int. J. Multiphase Flow 29, 23 (2003).CrossRefMATHGoogle Scholar
  19. 19.
    L. I. Zaichik, A. P. Skibin, S. L. Solov’ev, “Simulation of the distribution of bubbles in a turbulent liquid using a diffusion-inertia model,” High Temp. 42 (2004) pp. 101–107.Google Scholar
  20. 20.
    V. M. Alipchenkov and L. I. Zaichik, “Modeling of the Motion of Light-Weight Particles and Bubbles in Turbulent Flows,” Fluid Dynamics 45 (4), 574 (2010).ADSMathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    M. A. Pakhomov and V. I. Terekhov, “Modeling of Turbulent Structure of an Upward Polydisperse Gas-Liquid Flow,” Fluid Dynamics 50 (2), 229 (2015).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    D. A. Gubaidullin and Yu. V. Fedorov, ‘Sound Waves in Liquids with Polydisperse Vapor-Gas and Gas Bubbles,” Fluid Dynamics 50 (1), 61 (2015).Google Scholar
  23. 23.
    L. I. Zaichik, “A Statistical Model of Particle Transport and Heat Transfer in Turbulent Shear Flows,” Phys. Fluids 11, 1521 (1999).ADSCrossRefMATHGoogle Scholar
  24. 24.
    I. V. Derevich, “Statistical Modelling of Mass Transfer in Turbulent Two-Phase Dispersed Flows. 1. Model Development,” Int. J. Heat Mass Transfer 43, 3709 (2000).CrossRefMATHGoogle Scholar
  25. 25.
    M. Lopez de Bertodano, R. T. Lahey, and O. C. Jones, “Phase Distribution in Bubbly Two-Phase Flow in Vertical Ducts,” Int. J. Multiphase Flow 20. 805 (1994).CrossRefMATHGoogle Scholar
  26. 26.
    M. Politano, P. Carrica, and J. Converti, “A Model for Turbulent Polydisperse Two-Phase Flow in Vertical Channel,” Int. J. Multiphase Flow 29, 1153 (2003).CrossRefMATHGoogle Scholar
  27. 27.
    H. Lamb, Hydrodynamics, Cambridge Univ. Press, Cambridge (1932).MATHGoogle Scholar
  28. 28.
    T. J. Craft and B. E. Launder, “New Wall-Reflection Model Applied to the Turbulent Impinging Jet,” AIAA J. 30, 2970 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    A. Biesheuvel and L. Van Wijngaarden, “Two-Phase Flow Equation for a Dilute Dispersion of Gas Bubbles in Liquid,” J. Fluid Mech. 148, 301 (1984).ADSCrossRefMATHGoogle Scholar
  30. 30.
    E. Loth, “Quasi-Steady Shape and Drag of Deformable Bubbles and Drops,” Int. J. Multiphase Flow 34, 523 (2008).CrossRefGoogle Scholar
  31. 31.
    G. B. Wallis, “The Terminal Speed of Single Drops in an Infinite Medium,” Int. J. Multiphase Flow 1, 491 (1974).CrossRefGoogle Scholar
  32. 32.
    O. N. Kashinskii, R. S. Gorelik, and V. V. Randin, “Phase Velocities in a Bubbly Gas-Liquid Flow,” J. Eng. Phys. Thermophys. 57, 12 (1989).Google Scholar
  33. 33.
    D. A. Drew and R. T. Lahey, “The Virtual Mass and Lift Force on a Sphere in Rotating and Straining Inviscid Flow,” Int. J. Multiphase Flow 13, 113 (1987).CrossRefMATHGoogle Scholar
  34. 34.
    A. Tomiyma, H. Tamai, I. Zun, and S. Hosokawa, “Transverse Migration of Single Bubbles in Simple Shear Flows,” Chem. Eng. Sci. 57, 1849 (2002).CrossRefGoogle Scholar
  35. 35.
    S. P. Antal, R. T. Lahey, and J. E. Flaherty, “Analysis of Phase Distribution in Fully Developed Laminar Bubbly Two-Phase Flow,” Int. J. Multiphase Flow 17, 635 (1991).CrossRefMATHGoogle Scholar
  36. 36.
    B. P. Leonard, “A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation,” Comput. Methods Appl. Mech. Eng. 19, 59 (1979).ADSCrossRefMATHGoogle Scholar
  37. 37.
    J. P. Van Doormal and G. D. Raithby, “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flow,” Int. J. Numer. Heat Transfer A 7, 147 (1974).ADSMATHGoogle Scholar
  38. 38.
    T. J. Craft, L. J. W. Graham, and B. E. Launder, “Impinging Jet Studies for Turbulence Model Assessment. II. An Examination of the Performance of Four Turbulence Models,” Int. J. Heat Mass Transfer 36, 2685 (1993).CrossRefGoogle Scholar
  39. 39.
    W. P. Jones and B. E. Lounder, “The Calculation of Low-Reynolds-Number Phenomena with a Two-Equation Model of Turbulence,” Int. J. Heat Mass Transfer 15, 1119 (1973).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of ScienceNovosibirskRussia

Personalised recommendations