Advertisement

Fluid Dynamics

, Volume 52, Issue 2, pp 264–274 | Cite as

Excitation of controllable perturbations in the three-dimensional boundary layer using plasma actuators

  • A. F. Kiselev
  • A. P. Kuryachii
  • S. L. Chernyshev
Article

Abstract

Two versions of the structure of a multi-discharge plasma actuator intended to excite boundary layer perturbations in the neighborhood of the leading swept-wing edge are suggested. The actuator must prevent from appearance and development of the crossflow instability modes leading to laminarturbulent transition under the normal conditions. In the case of flow past a swept wing, excitation of controllable perturbations by the plasma actuator is simulated numerically in the steady-state approximation under the typical conditions of cruising flight of a subsonic aircraft. The local body force and thermal impact on the boundary layer flow which is periodic along the leading wing edge is considered. The calculations are carried out for the physical impact parameters realizable in the near-surface dielectric barrier discharge.

Keywords

swept wing boundary layer crossflow instability dielectric barrier discharge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Abbas, J. de Vicente, and E. Valero, “Aerodynamic Technologies to Improve Aircraft Performance,” Aero. Sci. Tech. 28, 100–132 (2013).CrossRefGoogle Scholar
  2. 2.
    D. Arnal and G. Casalis, “Laminar-TurbulentTransition Prediction in Three-Dimensional Flows,” Prog. Aerospace Sci. 36, No. 2, 173–191 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    W. S. Saric, R. B. Carrillo, and M. S. Reibert, “Leading-Edge Roughness as a Transition Control Mechanism,” AIAA Paper, No. 98–0781 (1998).Google Scholar
  4. 4.
    W. S. Saric, D. E. West, M. W. Tufts, and H. L. Reed, “Flight Test Experiments on Discrete Roughness Element Technology for Laminar Flow Control,” AIAA Paper, No. 2015–0539 (2015).Google Scholar
  5. 5.
    E. B. White and W. S. Saric, “Application of Variable Leading-Edge Roughness for Transition Control on Swept Wing,” AIAA Paper No. 2000–0283 (2000).Google Scholar
  6. 6.
    J. R. Roth, D. M. Sherman, and S. P. Wilkinson, “Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma,” AIAA J. 38, No. 7, 1166–1172 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    D. Schatzman, M. Wicks, P. Bowles, F. Thomas, and T. Corke, “A parametric Investigation of Plasma Streamwise Vortex Generator Performance,” AIAA Paper, No. 2012–0824 (2012).Google Scholar
  8. 8.
    T. N. Jukes and K.-S. Choi, “On the Formation of Streamwise Vortices by Plasma Vortex Generators,” J. Fluid Mech. 733, 370–393 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    I. Moralev, V. Sherbakova, P. Kazansky, A. Efimov, and V. Bityurin, “The Structure of the Dielectric Barrier Discharge and its Effect on the Discharge Initiated Gasdynamic Disturbances,” in: 6th EUCASS-2015. Report FP EUCASS-357. Poland: Krakow, 29 June-3 July, 2015 (2015).Google Scholar
  10. 10.
    R. Joussot, A. Leroy, R. Weber, H. Rabat, S. Loyer, and D. Hong, “Plasma Morphology and Induced Airflow Characterization of a DBD Actuator with Serrated Electrode,” J. Phys. D: Appl. Phys. 46, No. 12, P. 125204 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    R. J. Durscher and S. Roy, “Three-Dimensional Flow Measurements Induced from Serpentine Plasma Actuators in Quiescent Air,” J. Phys. D: Appl. Phys. 45, No. 3, P. 035202 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    A. P. Kuryachii, S. V. Manuilovich, D. A. Rus’yanov, V. V. Skvortsov, and S. I. Chernyshev, “Estimation of the Possibility of Control of Laminar-Turbulent Transition on a SweptWing Using Plasma Actuators,” Uchen. Zap. TsAGI 45, No. 4, 3–18 (2014).Google Scholar
  13. 13.
    D. Dunn and C. Lin, “The Stability of the Laminar Boundary Layer in a Compressible Fluid for the Case of Three-Dimensional Disturbances,” J. Aeronautical Sci. 19, 491–502 (1952).MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. V. Ustinov, “Numerical Modeling of the Laminar-Turbulent Transition Control Using a Dielectric Barrier Discharge,” Fluid Dynamics 51 (2), 200–213 (2016).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    N. Benard, A. Debien, E. Moreau, “Time-DependentVolume Force Produced by a Non-Thermal Plasma Actuator from Experimental Velocity Field,” J. Phys. D: Appl. Phys. 46, P. 245201 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    J. Kriegseis, C. Schwartz, C. Tropea, and S. Grundmann, “Velocity-Information-Based Force-Term Estimation of Dielectric-Barrier Discharge Plasma Actuator,” J. Phys. D. Appl. Phys. 46, 055202 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    N. Benard, M. Caron, and E. Moreau, “Evaluation of the Time-Resolved EHD Force Produced by a Plasma Actuator by Particle Image Velocimetry—a Parametric Study,” J. Phys.: Conf. Ser. 646, P. 012055 (2015).Google Scholar
  18. 18.
    N. Benard and E. Moreau, “Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control,” Exp. Fluids. 55, P. 1846 (2014).CrossRefGoogle Scholar
  19. 19.
    A. P. Kuryachii and S. V. Manuilovich, “Attenuation of the Crossflow Instability in the Three-Dimensional Boundary Layer Using Body Forcing,” Uch. Zap. TsAGI 42, No. 3, 41–52 (2011).Google Scholar
  20. 20.
    D. P. Rizzeta, M. R. Visbal, H. L. Reed, W. S. Saric, “Direct Numerical Simulation of Discrete Roughness on a Swept-Wing Leading Edge,” AIAA J. 48, No. 11, 2660–2673 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. F. Kiselev
    • 1
  • A. P. Kuryachii
    • 1
  • S. L. Chernyshev
    • 1
  1. 1.Central Aerohydrodynamic Institute (TsAGI)Zhukovsky, Moscow oblastRussia

Personalised recommendations