Advertisement

Fluid Dynamics

, Volume 52, Issue 2, pp 253–263 | Cite as

Instability of a liquid layer under periodic influence: Falling film in an alternating electric field

  • E. I. Mogilevskii
Article
  • 85 Downloads

Abstract

The linear analysis of stability of a plane-parallel time-periodic flow is carried out. The numerical method which makes it possible to reduce the spectral problem for the time-dependent Orr–Sommerfeld equation to an algebraic eigenvalue problem is used. The film of viscous conducting liquid which flows down a vertical wall in the normal electric field is considered and parametric resonances are revealed.

Keywords

hydrodynamic instability electric field Floquet theory thin films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. S. Yih, “Stability of Liquid Flow down an Inclined Plane,” Phys. Fluids. 6, No. 3, 321–334 (1963).ADSCrossRefMATHGoogle Scholar
  2. 2.
    T. V. Benjamin, “Wave Formation in Laminar Flow down an Inclined Plane,” J. Fluid Mech. 2, 554–573 (1957).ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    P. L. Kapitsa and S. P. Kapitsa, “Wave Flows of Thin Liquid Layers”, Zh. Eksp. Teor. Fiz. 19, No. 2. pp. 105–120 (1949).Google Scholar
  4. 4.
    V. Ya. Shkadov, “Wave Flow Regimes of a Thin Layer of Viscous Fluid Subject to Gravity,” Fluid Dynamics 2 (1), 29–34 (1967).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    V. Ya. Shkadov, “Wave-Flow Theory for a Thin Viscous Liquid Layer,” Fluid Dynamics 3) No. 2, 12–15 (1968).ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    V. Ya. Shkadov and E. A. Demekhin, “Wave Motions of Liquid Films on a Vertical Surface (Theory for Interpretation of Experiments),” Uspekhi Mekhaniki 4, No. 2, 3–65 (2006).Google Scholar
  7. 7.
    S. Kalliadasis, C. Ruyer-Quil, B. Scheid, and M. G. Velarde, Falling Liquid Films (Springer, London, 2012).CrossRefMATHGoogle Scholar
  8. 8.
    E. I. Mogilevskii and V. Ya. Shkadov, “Effect of Bottom Topography on the Flow of a Non-Newtonian Liquid Film down an Inclined Plane,” Moscow Univ. Mech. Bull., 62, No. 3, 76–83 (2007).CrossRefGoogle Scholar
  9. 9.
    C. Heining, V. Bontozoglou, N. Aksel, A. Wierschem, “Nonlinear Resonance in Viscous Films on InclinedWavy Planes,” Int. J. of Multiphase Flow 35, 78–90 (2009).CrossRefGoogle Scholar
  10. 10.
    T. Poliak and N. Aksel, “Crucial Flow Stabilization and Multiple Instability Branches of Gravity-Driven Films over Topography,” Phys. Fluids 25, P. 024103 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. Ya. Trifonov, “Stability and Nonlinear Wavy Regimes in Downward Film Flows on a Corrugated Surface,” J. Applied Mechanics and Technical Physics 48, No. 1, 91–100 (2007).ADSCrossRefMATHGoogle Scholar
  12. 12.
    D. R. Woods and S. P. Lin, “Instabilities of a Liquid Film Flow over a Vibrating Inclined Plane,” J. Fluid Mech. 294, 391–407 (1995).ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    A. G. Burya and V. Ya. Shkadov, “Stability of a Liquid Film Flowing Down an Oscillating Inclined Surface,” Fluid Dynamics 36 (5), 671–681 (2001).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    H. Garih, A. Strzelecki, G. Casalis, and J. L. Estivalezes, “Detailed Analysis of the Vibration Induced Instability of a Liquid Film Flow,” Phys. Fluids 25, 014101 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    A. A. Shutov, “Flow of an Inclined Surface-Charged Layer in a Longitudinal Electric Field,” Fluid Dynamics 38 (5), 692–697 (2003).ADSCrossRefMATHGoogle Scholar
  16. 16.
    E. I. Mogilevskii, V. Ya. Shkadov, and A. A. Shutov, “Equilibrium Shapes of a Drop Pendant in an Electrostatic Field,” Fluid Dynamics 47 (5), 575–582 (2012).ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    S. O. Shiryaeva, N. A. Petrushov, and A. I. Grigor’ev, ”On the Equilibrium Shape of a Heavily Charged Drop Suspended in a Weak Electrostatic Field,” Technical Physics 60, No. 8, 1136–1143 (2015).Google Scholar
  18. 18.
    A. Gonzalez and A. Castellanos, “Nonlinear Electrohydrodynamic Waves on Films Falling down an Inclined Plane,” Phys. Rev. E. 53, 3573–3578 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    D. Tseluiko and D. T. Papageorgiou, “Wave Evolution on Electrified Falling Films,” J. Fluid Mech. 556, 361–386 (2006).ADSMathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    B. Uma and R. Usha, “A Thin Conducting Viscous Film on an Inclined Plane in the Presence of a Uniform Normal Electric Field–Bifurcation Scenarios,” Phys. Fluids 20, P. 022803 (2008).CrossRefMATHGoogle Scholar
  21. 21.
    A. Mukhopadhyay and B. S. Dandapat, “Nonlinear Stability of Conducting Viscous Film Flowing down an Inclined Plane at Moderate Reynolds Number in the Presence of a Uniform Normal Electric Field,” Journal of Physics D: Applied Physics 38, No. 1, 138–143 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    V. A. Saranin, Stability of Equilibrium, Charging, Convection, and Interaction of Liquid Masses in Electric Fields (Research Center “Regular and Chaotic Dynamics,” Moscow, Izhevsk, 2009) [in Russian].Google Scholar
  23. 23.
    P. A. Kuchment, “Floquet Theory for Partial Differential Equations,” Russian Mathematical Survey 37, No. 4, 1–60 (1982).ADSMathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients and their Applications (Nauka, Moscow, 1972) [in Russian].Google Scholar
  25. 25.
    A. I. Grigor’ev, S. O. Shiryaeva, V. A. Koromyslov, and D. F. Belonozhko, “Capillary Oscillations and Tonks- Frenkel Instability of a Liquid Layer of Finite Thickness,” Technical Physics 42, No. 8, 877–883 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Faculty of Mechanics and MathematicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations