Fluid Dynamics

, Volume 52, Issue 2, pp 239–252 | Cite as

Numerical and experimental investigation of the means for reducing the aeroacoustic loads in an extended rectangular cavity at subsonic and transonic freestream velocities

  • R. G. Abdrashitov
  • E. Yu. Arkhireeva
  • B. N. Dan’kov
  • V. S. Korotaev
  • A. P. Kosenko
  • O. Yu. Popov
  • O. K. Strel’tsov
  • I. B. Chuchkalov
Article
  • 43 Downloads

Abstract

The results of a comprehensive investigation including numerical calculations and experiments with models in a wind tunnel and a vehicle under flight conditions aiming to find the ways of reducing the pressure fluctuation levels in an extended cavity at subsonic and transonic freestream velocities are presented. It is shown that the reduction of these loads can be achieved using the means which have demonstrated their effectiveness for cavities with the open-type flows, for example, a permeable deflector and the bevelling of the rear wall but only in the case of a given combination of their geometric parameters. The mechanisms of the action of these devices on the flow, thanks to which the intensity of the wave disturbances generated by the rear wall is reduced, the instability wave growth in the mixing layer behind the deflector is limited, and the fluctuation level in the cavity decreases, are investigated. The results of numerical investigations of the flow in a cavity with a permeable deflector are apparently among the first.

Keywords

extended cavity permeable deflector turbulent flows mixing layer instability wave wave disturbances dissipation losses aeroacoustic loads pressure fluctuations combined numerical methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Clark, “Evaluation of F-111Weapon Bay Aero-Acoustic andWeapon Separation Improvement Techniques,” AFFDL-TR-79-3003 (1979).Google Scholar
  2. 2.
    S. Arunajatesan, J. M. Seiner, J. D. Shipman, and N. Sinha, “Mechanisms in High-Frequency Control of Cavity Flows,” AIAA-2003-0005. 41st AIAA Aerospace Meeting & Exhibit, 2002, Reno, NY.Google Scholar
  3. 3.
    S. Arunajatesan, C. M. Kannepalli, and N. Sinha, “Analysis of Control Concepts for Cavity Flows,” AIAA-2006- 2427. CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference), 2006, Cambridge, Ma.CrossRefGoogle Scholar
  4. 4.
    S. V. Babu and G. N. Barakos, “Prediction of Acoustics of Transonic Cavities Using DES and SAS,” 3rd Intern, Workshop “Computational Experiment in Aeroacoustics”, 2014, Svetlogorsk, Russia.Google Scholar
  5. 5.
    N. L. Zaugol’nikov, M. A. Koval’, and A. I. Shvets, “Fluctuations in Cavities in a Supersonic Gas Flow,” Fluid Dynamics 25(2), 266 (1990).ADSCrossRefGoogle Scholar
  6. 6.
    R. G. Abdrashitov, E. Yu. Arkhireeva, B. N. Dan’kov, I. S. Men’shov, A. V. Severin, I. V. Semenov, T. V. Trebunskikh, and I. B. Chuchkalov, “Mechanisms of Unsteady Processes in Extended Cavities,” Uch. Zap. TsAGI 43(4), 39 (2012).Google Scholar
  7. 7.
    D. Rockwell, “Oscillations in Impinging Shear Layers,” AIAA J. 21, 645 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    J. E. Rossiter, “Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds,” Roy. Aircraft Establishment Techn. Rep. 64037 (1964).Google Scholar
  9. 9.
    H. H. Heller, D. G. Holmes, and E. E. Covert, “Flow Induced Pressure Oscillations in Shallow Cavities,” J. Sound Vibr. 18, 545 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    H. H. Heller and D. B. Bliss, “The Physical Mechanism of Flow Induced Pressure Fluctuations in Cavities and Concepts for Their Suppression,” AIAA Paper No. 491 (1975).CrossRefGoogle Scholar
  11. 11.
    P. J. W. Block, “Noise Response of Cavity of Varying Dimensions at Subsonic Speeds,” NASA TN ND-8351 (1976).Google Scholar
  12. 12.
    C. K. W. Tam and P. T. W. Block, “On the Tones and Pressure Oscillations Induced by Flow over Rectangular Cavities,” J. Fluid Mechanics 89, 373 (1978).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    W. L. Hankey and J. S. Shang, “Analyses of Pressure Oscillation in Open Cavity,” AIAA J. 18, 892 (1980).ADSCrossRefMATHGoogle Scholar
  14. 14.
    A. N. Antonov, A. N. Vishnyakov, and S. P. Shalaev, “Experimental Investigation of Pressure Fluctuations in a Cavity in a Subsonic or Supersonic Gas Flow,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 2, 89 (1981).Google Scholar
  15. 15.
    P. R. Spalart, W. H. Jou, M. Kh. Strelets, and S. R. Allmaras, “Comments on the Feasibility of LES for Wings, and on the Hybrid RANS/LES Approach,” in: Proc. First AFOSR Intern. Conf. on DNS/LES. August 1997, Ruston, USA (1997), p. 137.Google Scholar
  16. 16.
    M. L. Shur, P. R. Spalart, M. Kh. Strelets, and A. K. Travin, “A Hybrid RANS-LES Approach with Delayed-DES and Wall-Modeled LES Capabilities,” Int. J. Heat Fluid Flow 29, 1638 (2008).CrossRefGoogle Scholar
  17. 17.
    J. W. Deardorff, “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers,” J. Fluid Mech. 41, 453 (1970).ADSCrossRefMATHGoogle Scholar
  18. 18.
    M. G. Lebedev and G. F. Telenin, “Interaction of a Supersonic Jet with an Acoustic Field,” Inst. Mekh. MGU, Nauchnye Trudy No. 5, 88 (1970).Google Scholar
  19. 19.
    B. N. Dan’kov, A. P. Duben’, and T. K. Kozubskaya, “Numerical Investigation of Unsteady Turbulent Flow past a Wedge-Shaped Body with a Backward-Facing Step,” in: Fifth All-Russian Conf. ‘Numerical Experiment in Aeroacoustics’ Svetlogorsk. September 2014 (2014), p. 55.Google Scholar
  20. 20.
    J. C. R. Hunt, A. Wray, and P. Moin, “Eddies, Stream, and Convergence Zones in Turbulent Flows” in: Report CTR-S88. Center for Turbulence Research, Stanford, USA. 1988 (1988), p. 193.Google Scholar
  21. 21.
    K. N. Volkov, “Methods for Visualizing Vortex Flows in Computational Fluid Dynamics and Their Application to the Solution of Applied Problems,” Nauchn.-Tekhn. Vestnik Inform. Tekhnologii, Mekhaniki i Optiki No. 3(91), 1 (2014).Google Scholar
  22. 22.
    R. C. Strawn, D. N. Kenwright, and J. Ahmad, “Computer Visualization of Vortex Wake Systems,” AIAA J. 37, 511 (1999).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Levy, D. Degani, and A. Seniger, “Graphical Visualization of Vortical Flows by Means of Helicity,” AIAA J. 28, 1347 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. G. Abdrashitov
    • 1
  • E. Yu. Arkhireeva
    • 2
  • B. N. Dan’kov
    • 2
  • V. S. Korotaev
    • 1
  • A. P. Kosenko
    • 2
  • O. Yu. Popov
    • 1
  • O. K. Strel’tsov
    • 1
  • I. B. Chuchkalov
    • 1
  1. 1.Sukhoi Design BureauMoscowRussia
  2. 2.Central Research Institute of Mechanical Engineering (TSNIIMASH)Korolev, Moscow oblastRussia

Personalised recommendations