Fluid Dynamics

, Volume 52, Issue 2, pp 230–238 | Cite as

Standing surface waves in a rectangular tank with local wall and bottom irregularities

Article
  • 31 Downloads

Abstract

The results of laboratory experiments on the estimation of the effect of wall and bottom geometry on the frequency, height, and decay rate of standing surface waves in a tank oscillating in the vertical direction are presented. The effect of one or two semi-cylindrical inserts mounted on the face and rear walls of the tank is considered in detail for the cases of a horizontal bottom and a linear shallow on the bottom. The experimental data are interpreted using a mathematical longwave model based on the method of accelerated convergence.

Keywords

standing surface waves seiches tank geometry method of accelerated convergence resonance dependence frequency shift decay rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. N. Sretenskii, Theory of Wave Motions of Fluids [in Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydrodynamics. Vol. 1 [in Russian], Fizmatgiz, Moscow (1963).MATHGoogle Scholar
  3. 3.
    A. Defant, Physical Oceanography. Vol. 2, Pergamon Press, Oxford (1961).Google Scholar
  4. 4.
    N. M. Arsen’eva, L. K. Davydov, L. N. Dubrovina, and N. G. Konkina, Seiches on the USSR Lakes [in Russian], Leningrad Univ. Press, Leningrad (1963).Google Scholar
  5. 5.
    I. Zacharias, “Verification of Seiching Processes in a Large and Deep Lake (Trichonis, Greece),” Medit. Mar. Sci. 1, 79 (2000).CrossRefGoogle Scholar
  6. 6.
    J. W. Miles, “Harbor Seiching,” Ann. Rev. Fluid Mech. 6, 17 (1974).ADSCrossRefMATHGoogle Scholar
  7. 7.
    V. N. Obolenskii, “Seiches and Their Theory,” Zapiski Gidrografii 43 (2), 13 (1919).Google Scholar
  8. 8.
    K. Honda, T. Terada, Y. Yoshida, and D. Isitani, “The Secondary Undulations of Oceanic Tides,” J. Coll. Sci., Imper. Univ. Tokyo 24, 1 (1908).MATHGoogle Scholar
  9. 9.
    R. B. Prigo, T. O. Manley, and B. S. H. Connell, “Linear, One-Dimensional Models of the Surface and Internal StandingWaves for a Long and Narrow Lake,” Amer. J. Phys. 64, 288 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    V. I. Bukreev, I. V. Sturova, and A. V. Chebotnikov, “Seiche Oscillations in a Rectangular Channel with a Sharp Cross-Sectional Expansion,” Zh. Prikl. Mekh. Tekhn. Fiz. No. 4, 22 (2013).MATHGoogle Scholar
  11. 11.
    A. R. Kabiri-Samani, “Natural Frequencies of Seiche in a Closed TrapezoidalBasin with Internal Barriers,” J. Civil Eng. Res. 3 (1), 22 (2013).Google Scholar
  12. 12.
    L. D. Akulenko, V. A. Kalinichenko, and S. V. Nesterov, “Seiches in a Channel with a Sharp Variation in the Bottom Relief,” Fluid Dynamics 47 (3), 387 (2012).ADSCrossRefMATHGoogle Scholar
  13. 13.
    V. A. Kalinichenko, S. V. Nesterov, and A. N. Soe, “FaradayWaves in a Rectangular tank with Local Bottom Irregularities,” Fluid Dynamics 50 (4), 535 (2015).CrossRefMATHGoogle Scholar
  14. 14.
    R. A. Ibrahim, Liquid Sloshing Dynamics: Theory and Applications, Cambridge Univ. Press, Cambridge (2005).CrossRefMATHGoogle Scholar
  15. 15.
    G. N. Mikishev and B. I. Rabinovich, Dynamics of Thin-Walled Designs with Liquid-Filled Compartments [in Russian], Mashinostroenie, Moscow (1971).Google Scholar
  16. 16.
    V. A. Kalinichenko, A. N. Soe, and Yu. D. Chashechkin, “Vortex-Induced Damping of Fluid Oscillations in a Rectangular Vessel,” Fluid Dynamics 50 (5), 635 (2015).CrossRefMATHGoogle Scholar
  17. 17.
    L. D. Akulenko and S. V. Nesterov, High-Precision Methods in Eigenvalue Problems and Their Applications, CRC Press, Boca Raton (2005).MATHGoogle Scholar
  18. 18.
    V. A. Kalinichenko, S. V. Nesterov, S. Ya. Sekerzh-Zen’kovich, and A. A. Chaikovskii, “Experimental Study of Surfaces Waves with Faraday Resonance Excitation,” Fluid Dynamics 30 (1), 101 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Kalinichenko
    • 1
  • S. V. Nesterov
    • 1
  • A. N. Soe
    • 2
  1. 1.Ishlinsky Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations